25 resultados para ANTIBODY RESPONSE
Resumo:
Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130–230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130–230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 µg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation.
Resumo:
Resumo:
An experiment was undertaken with 50 Texel x Suffolk-Cheviot lambs (54+/-8.8 days of age) to investigate the effects of active immunisation with a murine monoclonal antibody against clenburerol on growth and carcass characteristics. Animals on treatments 1 and 2 each received 0.1 mg of clenbuterol antibody while animals on treatments 3 and 4 received 0.1 mg of antibody encapsulated within a synthetic polymer. Diethylaminoethyl (DEAE)-dextran was used as the adjuvant in treatments 1 and 3 and saponin in treatments 2 and 4. Control animals were immunised with saponin only. Four immunisations were given at 4-week intervals. Animals were slaughtered 3 weeks after the final immunisation. Each vaccine evoked a similar level of antibody response while the control group showed no titres. Lamb growth rate did not vary significantly between the vaccinated and control groups. Dressing proportion was higher (P
Resumo:
Infection with Schistosoma japonicum causes high levels of pathology that is predominantly determined by the cellular and humoral response of the host. However, the specific antibody response that arises during the development of disease is largely undescribed in Asian schistosomiasis-endemic populations. A schistosome protein microarray was used to compare the antibody profiles of subjects with acute infection, with early or advanced disease associated with severe pathology, with chronic infection, and subjects exposed but stool negative for S. japonicum eggs to the antibody profiles of nonexposed controls. Twenty-five immunodominant antigens were identified, including vaccine candidates, tetraspanin-related proteins, transporter molecules, and unannotated proteins. Additionally, individuals with severe pathology had a limited specific antibody response, suggesting that individuals with mild disease may use a broad and strong antibody response, particularly against surface-exposed proteins, to control pathology and/or infection. Our study has identified specific antigens that can discriminate between S. japonicum-exposed groups with different pathologies and may also allow the host to control disease pathology and provide resistance to parasite infection.
Resumo:
The schistosome blood flukes are some of the largest global causes of parasitic morbidity. Further study of the specific antibody response during schistosomiasis may yield the vaccines and diagnostics needed to combat this disease. Therefore, for the purposes of antigen discovery, sera and antibody-secreting cell (ASC) probes from semi-permissive rats and sera from susceptible mice were used to screen a schistosome protein microarray. Following Schistosoma japonicum infection, rats had reduced pathology, increased antibody responses and broader antigen recognition profiles compared with mice. With successive infections, rat global serological reactivity and the number of recognized antigens increased. The local antibody response in rat skin and lung, measured with ASC probes, increased after parasite migration and contributed antigen-specific antibodies to the multivalent serological response. In addition, the temporal variation of anti-parasite serum antibodies after infection and reinfection followed patterns that appear related to the antigen driving the response. Among the 29 antigens differentially recognized by the infected hosts were numerous known vaccine candidates, drug targets and several S. japonicum homologs of human schistosomiasis resistance markers-the tegument allergen-like proteins. From this set, we prioritized eight proteins that may prove to be novel schistosome vaccine and diagnostic antigens.
Resumo:
The UK Food Standards Agency convened a workshop on 13 May 2009 to discuss recently completed research on diet and immune function. The objective of the workshop was to review this research and to establish priorities for future research. Several of the trials presented at the workshop showed some effect of nutritional interventions (e.g. vitamin D, Zn, Se) on immune parameters. One trial found that increased fruit and vegetable intake may improve the antibody response to pneumococcal vaccination in older people. The workshop highlighted the need to further clarify the potential public health relevance of observed nutrition-related changes in immune function, e.g. susceptibility to infections and infectious morbidity.
Resumo:
Background: Fruit and vegetable (FV) intake, which is often low in older people, is associated with reduced chronic disease risk. Objective: We determined whether increased FV intake improves measures of immune function. Design: We conducted a randomized controlled trial (The Ageing and Dietary Intervention Trial) in 83 healthy volunteers aged 65-85 y with low FV intakes (=2 portions/d); 82 subjects completed the intervention. Participants were assigned to continue their normal diets or to consume =5 FV portions/d for 16 wk. At 12 wk, tetanus toxoid (0.5 mL intramuscular) and Pneumovax II vaccine (0.5 mL intramuscular; both vaccines from Sanofi Pasteur) were administered. FV intake was monitored by using diet histories, and biomarkers of nutritional status were assessed. The primary endpoint was the antibody response to vaccination. Specific antibodies binding to tetanus toxoid (total IgG) and pneumococcal capsular polysaccharide (total IgG and IgG2) were assessed at baseline and 16 wk. Participants were recruited between October 2006 and June 2008. Results: The change in FV consumption differed significantly between groups [mean change in number of portions (95% CI): in the 2-portion/d group, 0.4 portions/d (0.2, 0.7 portions/d); in the 5-portion/d group, 4.6 portions/d (4.1, 5.0 portions/d); P < 0.001)] and also in micronutrient status. Antibody binding to pneumococcal capsular polysaccharide (total IgG) increased more in the 5-portion/d group than in the 2-portion/d group [geometric mean (95% CI) of the week 16:baseline ratio: 3.1 (2.1, 4.4) and 1.7 (1.3, 2.1), respectively; P = 0.005)]. There was no significant difference in the increases in antibody binding to tetanus toxoid. Conclusion: Increased FV intake improves the Pneumovax II vaccination antibody response in older people, which links an achievable dietary goal with improved immune function. This trial was registered at clinicaltrials.gov as NCT00858728. © 2012 American Society for Nutrition.
Resumo:
An experimental oral pig model was used to assess the pathogenic and immunogenic potential of Yersinia enterocolitica serotype O:8 wild-type strain 8081-L2 and its lipopolysaccharide (LPS) mutant derivatives: a spontaneous rough mutant 8081-R2, strain 8081-DeltawzzGB expressing O-antigen with uncontrolled chain lengths, and strain 8081-wbcEGB expressing semirough LPS with only one O-unit. Microbiological and immunological parameters of the infected pigs were followed from day 7 to 60 postinfection. The wild-type and all LPS mutant strains persisted in the lymphoid tissue of tonsils and small intestines, causing asymptomatic infection without any pathological changes. Although the pig is known as a reservoir of Yersiniae, a precise analysis of pathogenic and immunogenic parameters based on different in vitro tests (hematological response, killing ability of leukocytes and blood sera, antibody response, hydrogen peroxide production by macrophages, classical and alternative pathways of complement activation), revealed significant attenuation in the pathogenicity of the LPS mutant strains but not the loss of immunogenic potential. In comparison with the other strains, strain 8081-DeltawzzGB demonstrated more continuous leucocytosis with monocytosis, higher invasive potential, significant activation of hydrogen peroxide production by macrophages and an effective immunoglobulin G immune response accompanied by relevant histological immunomorphological rearrangements.
Resumo:
The potential of a microparticulate vaccine delivery system in eliciting a specific mucosal antibody response in the respiratory tract of mice was evaluated. Two vaccine candidate peptides representing epitopes from the G attachment and F fusion antigens from bovine respiratory syncytial virus (BRSV) were encapsulated into poly(dl- lactide co-glycolide) biodegradable microparticles. The encapsulation process did not denature the entrapped peptides as verified by detection of peptide-specific antibodies in mucosal secretions by ELISA using peptide as antigen. Following intranasal immunisation, the encapsulated peptides induced stronger upper and lower respiratory tract specific-IgA responses, respectively, than the soluble peptide forms. Moreover, a strong peptide-specific cell-mediated immune response was measured in splenocytes in vitro from the mice inoculated with the encapsulated peptides compared to their soluble form alone indicating that migration of primed T cells had taken place from the site of mucosal stimulation in the upper respiratory tract to the spleen. These results act as a foundation for vaccine efficacy studies in large animal BRSV challenge models.
Resumo:
Using mice harbouring early Fasciola hepatica infections, six monoclonal antibodies were prepared against a tegumental antigen present in T1 granules and glycocalyx of flukes. Blocking tests indicated that all monoclonals bound the same T1 epitope (or epitopes in close proximity on the antigen molecule), but this was not the determinant recognized by sheep and cattle. Localization of antibody binding at light and electron microscope levels showed that T1-type antigen also occurred in metacercarial tegument and in glycocalyx of gut cells and excretory ducts in juvenile and adult flukes. This indicates that the natural host-antibody response to F. hepatica may be to one antigen early in the infection. Protein A-gold labelling of monoclonal treated fluke sections revealed that the epitope was probably a polypeptide, unmodified by glycosylation in Golgi bodies. When isolated by immunoadsorption and separated electrophoretically under reducing conditions T1-type antigen was found to consist of a polypeptide mol. wt. 50 000, possibly linked to smaller entities mol. wt. 25-40 000. Tissue-specific variations in the antigen molecule might be conferred by linkage of different polypeptides or carbohydrate side-chains to an antigenic core polypeptide. A component of T1-type antigen was found to have mol. wt. of 25 000, possibly resembling a polypeptide of mol. wt. 24 000 from Schistosoma mansoni tegument.
Resumo:
Cytogenetic analysis in myeloma reveals marked chromosomal instability. Both widespread genomic alterations and evidence of aberrant class switch recombination, the physiological process that regulates maturation of the antibody response, implicate the DNA repair pathway in disease pathogenesis. We therefore assessed 27 SNPs in three genes (XRCC3, XRCC4 and XRCC5) central to DNA repair in patients with myeloma and controls from the EpiLymph study and from an Irish hospital registry (n = 306 cases, 263 controls). For the haplotype-tagging SNP (htSNP) rs963248 in XRCC4, Allele A was significantly more frequent in cases than in controls (86.4 versus 80.8%; odds ratio 1.51; 95% confidence interval 1.10-2.08; P = 0.0133), as was the AA genotype (74 versus 65%) (P = 0.026). Haplotype analysis was performed using Unphased for rs963248 in combination with additional SNPs in XRCC4. The strongest evidence of association came from the A-T haplotype from rs963248-rs2891980 (P = 0.008). For XRCC5, the genotype GG from rs1051685 was detected in 10 cases from different national populations but in only one control (P = 0.015). This SNP is located in the 3'-UTR of XRCC5. Overall, these data provide support for the hypothesis that common variation in the genes encoding DNA repair proteins contributes to susceptibility to myeloma.
Resumo:
We describe five children who died of clinical rabies in a three month period (September to November 2011) in the Queen Elizabeth Central Hospital. From previous experience and hospital records, this number of cases is higher than expected. We are concerned that difficulty in accessing post-exposure prophylaxis (PEP) rabies vaccine may be partly responsible for this rise. We advocate: (a) prompt course of active immunisation for all patients with significant exposure to proven or suspected rabid animals. (b) the use of an intradermal immunisation regime that requires a smaller quantity of the vaccine than the intramuscular regime and gives a better antibody response. (c) improved dog rabies control measures.
Resumo:
A proof-of-concept study was reported on analysis of antigen–antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles in an imaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, individual Au nanoparticles (30 nm) were observed with high signal-to-noise ratio and they were effectively utilized to monitor changes in refractive index induced by specific binding of the adsorbates. Using PSA antigen as a model, a LSPR ?max shift of about 2.85 nm was recorded for a molecular binding corresponding to 0.1 pg ml-1 of the protein biomarker. This result successfully demonstrates a non-labeling detection system for proteins as well as thousands of different chemical or biological species, and it possesses a great potential as a sensitive, on-chip and multiplexing detection.
Resumo:
Resistance in Fasciola hepatica to triclabendazole (Fasinex) has emerged in several countries. Benzimidazole resistance in parasitic nematodes has been linked to a single amino acid substitution (phenylalanine to tyrosine) at position 200 on the [beta]-tubulin molecule. Sequencing of [beta]-tubulin cDNAs from triclabendazole-susceptible and triclabendazole-resistant flukes revealed no amino acid differences between their respective primary amino acid sequences. In order to investigate the mechanism of triclabendazole resistance, triclabendazole-susceptible and triclabendazole-resistant flukes were incubated in vitro with triclabendazole sulphoxide (50 [mu]g/ml). Scanning and transmission electron microscopy revealed extensive damage to the tegument of triclabendazole-susceptible F. hepatica, whereas triclabendazole-resistant flukes showed only localized and relatively minor disruption of the tegument covering the spines. Immunocytochemical studies, using an anti-tubulin antibody, showed that tubulin organization was disrupted in the tegument of triclabendazole-susceptible flukes. No such disruption was evident in triclabendazole-resistant F. hepatica. The significance of these findings is discussed with regard to the mechanism of triclabendazole resistance in F. hepatica.