70 resultados para ADD-DROP FILTERS
Resumo:
Whilst conventional bit level pipelining introduces an m cycle delay, it does allow m separate computations to be processed at throughput rates comparable to that using word level systolic arrays. We concentrate on exploiting this delay and describe a systematic method for the design of high performance multiplexed IIR filters. Two multiply and accumulate structures are identified based on shift-and-add and carry-save data organisations which can be used as building blocks in the design of IIR filters. By replacing the word level multiply and accumulate units in word level systolic structures with their equivalent bit level circuits and introducing latches to ensure correct timing, numerous architectures can be designed that process multiplexed data directly without any additional circuit overhead.
Resumo:
The prediction of the pressure drop for turbulent single-phase fluid flow around sharp 90° bends is difficult owing to the complexity of the flow arising from frictional and separation effects. Several empirical equations exist, which accurately predict the pressure loss due to frictional effects. More recently, Crawford et al. [1] proposed an equation for the prediction of pressure loss due to separation of the flow. This work proposes a new composite equation for the prediction of pressure drop due to separation of the flow, which incorporates bends with ratio R/r <2. A new composite equation is proposed to predict pressure losses over the Reynolds number range 4 x 103-3 x 105. The predictions from the new equation are within a range of -4 to +6 per cent of existing experimental data.
Resumo:
Neural adaptation and inhibition are pervasive characteristics of the primate brain, and are probably understood better within the context of visual processing than any other sensory modality. These processes are thought to underlie illusions in which one motion affects the perceived direction of another, such as the direction aftereffect (DAE) and direction repulsion. The DAE describes how, following prolonged viewing of motion in one direction, the direction of a subsequently viewed test pattern is misperceived. In the case of direction repulsion, the direction difference between two transparently moving surfaces is over-estimated. Explanations of the DAE appeal to neural adaptation whilst direction repulsion is accounted for through lateral inhibition. Here we report on a new illusion, the Binary DAE, in which superimposed slow and fast dots moving in the same direction are perceived to move in different directions following adaptation to a mixed-speed stimulus. This new phenomenon is essentially a combination of the DAE and direction repulsion. Interestingly the magnitude of the binary DAE is greater than would be expected simply through a linear combination of the DAE and direction repulsion, suggesting that the mechanisms underlying these two phenomena interact in a non-linear fashion.
Resumo:
A model is presented for obtaining the step formation energy for metallic islands on (1 1 1) surfaces from Monte Carlo simulations. This model is applied to homo (Cu/Cu(1 1 1), Ag/Ag(1 1 1)) and heteroepitaxy (Ag/Pt(1 1 1)) systems. The embedded atom method is used to represent the interaction between the particles of the system, but any other type of potential could be used as well. The formulation can also be employed to consider the case of other single crystal surfaces, since the higher barriers for atom motion on other surfaces are not a hindrance for the simulation scheme proposed.
Resumo:
A variation of the least means squares (LMS) algorithm, called the delayed LMS (DLMS) algorithm is an ideally suited to achieve highly pipelined, adaptive digital filter implementations. The paper presents an efficient method of determining the delays in the DLMS filter and then transferring these delays using retiming in order to achieve fully pipelined circuit architectures for FPGA implementation. The method has been used to derive a series of retimed delayed LMS (RDLMS) architectures, which considerable reduce the number of delays and convergence time and give superior performance in terms of throughput rate when compared to previous work. Three circuit architectures and three hardware shared versions are presented which have been implemented using the Virtex-II FPGA technology resulting in a throughout rate of 182 Msample/s.
Resumo:
The problem of recognising targets in non-overlapping clutter using nonlinear N-ary phase filters is addressed. Using mathematical analysis, expressions were derived for an N-ary phase filter and the intensity variance of an optical correlator output. The N-ary phase filter was shown to consist of an infinite sum of harmonic terms whose periodicity was determined by N. For the intensity variance, it was found that under certain conditions the variance was minimised due to a hitherto undiscovered phase quadrature effect. Comparison showed that optimal real filters produced greater SNR values than the continuous phase versions as a consequence of this effect.