12 resultados para ACCURACIES
Resumo:
In this article, we present position indication functionality as obtained by using a retrodirective array, thereby allowing location information extraction of the position of the remote transmitter with which the retrodirective array is cooperating. This is carried out using straightforward circuitry with no requirement for complex angle of arrival algorithms, thereby giving a result in real time enabling tracking of fast moving transmitters. We show using a 10 x element retrodirective array, operating at 2.4 GHz that accuracies of far-field angle of arrival of within +/- 1 degrees over the arrays +/- 30 degrees azimuth field of view are possible. While in the near-field for angles of arrival of +/- 10 degrees it is possible to extract the position of a dipole source down to a resolution of 032 lambda. (C) 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 1031-1034, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25097
Resumo:
Densities and viscosities of the ionic liquid 1-butyl-3-methylimidazolium octylsulfate, [C4C1Im][C8SO4] were measured as a function of temperature between 313 K and 395 K. Solubilities of hydrogen and carbon dioxide were determined, between 283 K and 343 K, and at pressures close to atmospheric in [C4C1Im][C 8SO4] and in another ionic liquid based on the alkylsulfate anion-1-ethyl-3-methylimidazolium ethylsulfate, [C 2C1Im][C2SO4]. Density and viscosity were measured using a vibrating tube densimeter from Anton Paar and a rheometer from Rheometrics Scientific with accuracies of 10-3 g cm -3 and 1%, respectively. Solubilities were obtained using an isochoric saturation technique and, from the variation of solubility with temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs energy, the enthalpy, and the entropy, are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is better than ±1%. © The Royal Society of Chemistry.
Resumo:
The electronic stopping power of H and He moving through gold is obtained to high accuracy using time-evolving density-functional theory, thereby bringing usual first principles accuracies into this kind of strongly coupled, continuum nonadiabatic processes in condensed matter. The two key unexplained features of what observed experimentally have been reproduced and understood: (i)The nonlinear behavior of stopping power versus velocity is a gradual crossover as excitations tail into the d-electron spectrum; and (ii)the low-velocity H/He anomaly (the relative stopping powers are contrary to established theory) is explained by the substantial involvement of the d electrons in the screening of the projectile even at the lowest velocities where the energy loss is generated by s-like electron-hole pair formation only. © 2012 American Physical Society.
Resumo:
In this paper we present an Orientation Free Adaptive Step Detection (OFASD) algorithm for deployment in a smart phone for the purposes of physical activity monitoring. The OFASD algorithm detects individual steps and measures a user’s step counts using the smart phone’s in-built accelerometer. The algorithm considers both the variance of an individual’s walking pattern and the orientation of the smart phone. Experimental validation of the algorithm involved the collection of data from 10 participants using five phones (worn at five different body positions) whilst walking on a treadmill at a controlled speed for periods of 5 min. Results indicated that, for steps detected by the OFASD algorithm, there were no significant differences between where the phones were placed on the body (p > 0.05). The mean step detection accuracies ranged from 93.4 % to 96.4 %. Compared to measurements acquired using existing dedicated commercial devices, the results demonstrated that using a smart phone for monitoring physical activity is promising, as it adds value to an accepted everyday accessory, whilst imposing minimum interaction from the user. The algorithm can be used as the underlying component within an application deployed within a smart phone designed to promote self-management of chronic disease where activity measurement is a significant factor, as it provides a practical solution, with minimal requirements for user intervention and less constraints than current solutions.
Resumo:
A study was undertaken to examine a range of sample preparation and near infrared reflectance spectroscopy (NIPS) methodologies, using undried samples, for predicting organic matter digestibility (OMD g kg(-1)) and ad libitum intake (g kg(-1) W-0.75) of grass silages. A total of eight sample preparation/NIRS scanning methods were examined involving three extents of silage comminution, two liquid extracts and scanning via either external probe (1100-2200 nm) or internal cell (1100-2500 nm). The spectral data (log 1/R) for each of the eight methods were examined by three regression techniques each with a range of data transformations. The 136 silages used in the study were obtained from farms across Northern Ireland, over a two year period, and had in vivo OMD (sheep) and ad libitum intake (cattle) determined under uniform conditions. In the comparisons of the eight sample preparation/scanning methods, and the differing mathematical treatments of the spectral data, the sample population was divided into calibration (n = 91) and validation (n = 45) sets. The standard error of performance (SEP) on the validation set was used in comparisons of prediction accuracy. Across all 8 sample preparation/scanning methods, the modified partial least squares (MPLS) technique, generally minimized SEP's for both OMD and intake. The accuracy of prediction also increased with degree of comminution of the forage and with scanning by internal cell rather than external probe. The system providing the lowest SEP used the MPLS regression technique on spectra from the finely milled material scanned through the internal cell. This resulted in SEP and R-2 (variance accounted for in validation set) values of 24 (g/kg OM) and 0.88 (OMD) and 5.37 (g/kg W-0.75) and 0.77 (intake) respectively. These data indicate that with appropriate techniques NIRS scanning of undried samples of grass silage can produce predictions of intake and digestibility with accuracies similar to those achieved previously using NIRS with dried samples. (C) 1998 Elsevier Science B.V.
Resumo:
Both embodied and symbolic accounts of conceptual organization would predict partial sharing and partial differentiation between the neural activations seen for concepts activated via different stimulus modalities. But cross-participant and cross-session variability in BOLD activity patterns makes analyses of such patterns with MVPA methods challenging. Here, we examine the effect of cross-modal and individual variation on the machine learning analysis of fMRI data recorded during a word property generation task. We present the same set of living and non-living concepts (land-mammals, or work tools) to a cohort of Japanese participants in two sessions: the first using auditory presentation of spoken words; the second using visual presentation of words written in Japanese characters. Classification accuracies confirmed that these semantic categories could be detected in single trials, with within-session predictive accuracies of 80-90%. However cross-session prediction (learning from auditory-task data to classify data from the written-word-task, or vice versa) suffered from a performance penalty, achieving 65-75% (still individually significant at p « 0.05). We carried out several follow-on analyses to investigate the reason for this shortfall, concluding that distributional differences in neither time nor space alone could account for it. Rather, combined spatio-temporal patterns of activity need to be identified for successful cross-session learning, and this suggests that feature selection strategies could be modified to take advantage of this.
Resumo:
Background: The increasing prevalence of bovine tuberculosis (bTB) in the UK and the limitations of the currently available diagnostic and control methods require the development of complementary approaches to assist in the sustainable control of the disease. One potential approach is the identification of animals that are genetically more resistant to bTB, to enable breeding of animals with enhanced resistance. This paper focuses on prediction of resistance to bTB. We explore estimation of direct genomic estimated breeding values (DGVs) for bTB resistance in UK dairy cattle, using dense SNP chip data, and test these genomic predictions for situations when disease phenotypes are not available on selection candidates. Methodology/Principal Findings: We estimated DGVs using genomic best linear unbiased prediction methodology, and assessed their predictive accuracies with a cross validation procedure and receiver operator characteristic (ROC) curves. Furthermore, these results were compared with theoretical expectations for prediction accuracy and area-under-the-ROC- curve (AUC). The dataset comprised 1151 Holstein-Friesian cows (bTB cases or controls). All individuals (592 cases and 559 controls) were genotyped for 727,252 loci (Illumina Bead Chip). The estimated observed heritability of bTB resistance was 0.23±0.06 (0.34 on the liability scale) and five-fold cross validation, replicated six times, provided a prediction accuracy of 0.33 (95% C.I.: 0.26, 0.40). ROC curves, and the resulting AUC, gave a probability of 0.58, averaged across six replicates, of correctly classifying cows as diseased or as healthy based on SNP chip genotype alone using these data. Conclusions/Significance: These results provide a first step in the investigation of the potential feasibility of genomic selection for bTB resistance using SNP data. Specifically, they demonstrate that genomic selection is possible, even in populations with no pedigree data and on animals lacking bTB phenotypes. However, a larger training population will be required to improve prediction accuracies. © 2014 Tsairidou et al.
Resumo:
Sleep quality and duration are increasingly recognised as being important prognostic parameters in the assessment of an individual's health. However, reliable non-invasive long-term monitoring of sleep in a non-clinical setting remains a challenging problem. This paper describes the validation of a novel under mattress pressure sensing sleep monitoring modality that can be seamlessly integrated into existing home environments and provides a pervasive and distributed solution for monitoring long-term changes in sleep patterns and sleep disorders in adults. 410 minutes of concomitant Under Mattress Bed Sensor (UMBS) and strain gauge data were analysed from eight healthy adults lying passively. In this analysis, customised respirations rate detection algorithms yielded a mean difference of −0.12 breaths per five minutes and a mean percentage error (MPE) of 0.16% when the sensor was placed beneath the mattress. 1,491 minutes of UMBS and video data were recorded simultaneously from four participants in order to assess the movement detection efficacy of customised UMBS algorithms. These algorithms yielded accuracies, sensitivities and specificities of over 90% when compared to a video-based movement detection gold standard. A reduced data set (267 minutes) of wrist actigraphy, the gold standard ambulatory sleep monitor, was recorded. The UMBS was shown to outperform the movement detection ability of wrist actigraphy and has the added advantage of not requiring active subject participation.
Resumo:
Multivariate classification techniques have proven to be powerful tools for distinguishing experimental conditions in single sessions of functional magnetic resonance imaging (fMRI) data. But they are vulnerable to a considerable penalty in classification accuracy when applied across sessions or participants, calling into question the degree to which fine-grained encodings are shared across subjects. Here, we introduce joint learning techniques, where feature selection is carried out using a held-out subset of a target dataset, before training a linear classifier on a source dataset. Single trials of functional MRI data from a covert property generation task are classified with regularized regression techniques to predict the semantic class of stimuli. With our selection techniques (joint ranking feature selection (JRFS) and disjoint feature selection (DJFS)), classification performance during cross-session prediction improved greatly, relative to feature selection on the source session data only. Compared with JRFS, DJFS showed significant improvements for cross-participant classification. And when using a groupwise training, DJFS approached the accuracies seen for prediction across different sessions from the same participant. Comparing several feature selection strategies, we found that a simple univariate ANOVA selection technique or a minimal searchlight (one voxel in size) is appropriate, compared with larger searchlights.
Resumo:
Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of 'gold standard' tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies.
Resumo:
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.
Resumo:
We address the problem of mining interesting phrases from subsets of a text corpus where the subset is specified using a set of features such as keywords that form a query. Previous algorithms for the problem have proposed solutions that involve sifting through a phrase dictionary based index or a document-based index where the solution is linear in either the phrase dictionary size or the size of the document subset. We propose the usage of an independence assumption between query keywords given the top correlated phrases, wherein the pre-processing could be reduced to discovering phrases from among the top phrases per each feature in the query. We then outline an indexing mechanism where per-keyword phrase lists are stored either in disk or memory, so that popular aggregation algorithms such as No Random Access and Sort-merge Join may be adapted to do the scoring at real-time to identify the top interesting phrases. Though such an approach is expected to be approximate, we empirically illustrate that very high accuracies (of over 90%) are achieved against the results of exact algorithms. Due to the simplified list-aggregation, we are also able to provide response times that are orders of magnitude better than state-of-the-art algorithms. Interestingly, our disk-based approach outperforms the in-memory baselines by up to hundred times and sometimes more, confirming the superiority of the proposed method.