54 resultados para 432


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embrittlement by the segregation of impurity elements to grain boundaries is one of a small number of phenomena that can lead to metallurgical failure by fast fracture(1). Here we settle a question that has been debated for over a hundred years(2): how can minute traces of bismuth in copper cause this ductile metal to fail in a brittle manner? Three hypotheses for Bi embrittlement of Cu exist: two assign an electronic effect to either a strengthening(3) or weakening(4) of bonds, the third postulates a simple atomic size effect(5). Here we report first principles quantum mechanical calculations that allow us to reject the electronic hypotheses, while supporting a size effect. We show that upon segregation to the grain boundary, the large Bi atoms weaken the interatomic bonding by pushing apart the Cu atoms at the interface. The resolution of the mechanism underlying grain boundary weakening should be relevant for all cases of embrittlement by oversize impurities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy levels, radiative rates, collision strengths, and effective collision strengths for all transitions up to and including the n = 5 levels of AlXIII have been computed in the j j coupling scheme including relativistic effects. All partial waves with angular momentum J less than or equal to 60 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 170.0 less than or equal to E less than or equal to 300.0 Ryd, and results for effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.4 less than or equal to log T-e less than or equal to 6.8 K. The importance of including relativistic effects in a calculation is discussed in comparison with the earlier available non-relativistic results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rings of perovskite lead zirconium titanate (PZT) with internal diameters down to similar to 5 nm and ring thicknesses of similar to 5-10 nm have been fabricated and structurally, crystallographically, and chemically characterized using an analytical transmission electron microscope. Ring fabrication involved conformal solution deposition of a thin layer of PZT on the inside of a thin film of anodized aluminum oxide nanopores, and subsequent sectioning of the coated pores perpendicular to their cylinder axes. Although the starting solution used for the solution deposition was made from morphotropic phase boundary PZT, the nanorings were found to be on the zirconium-rich side of the PZT phase diagram. Nevertheless, coatings were found to be of perovskite crystallography. The dimensions of these nanorings are such that they have the potential to demonstrate polarization vortices, as modeled by Naumov [Nature (London) 432, 737 (2004)], and moreover represent the perfect morphology to allow vortex alignment and the creation of the ferroelectric "solenoid" as modeled by Gorbatsevich and Kopaev [Ferroelectrics 161, 321 (1994)].

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: We describe key components of normal and aberrant death receptor pathways, the association of these abnormalities with tumorigenesis in bladder, prostate and renal cancer, and their potential application in novel therapeutic strategies targeted toward patients with cancer.

MATERIALS AND METHODS: A MEDLINE literature search of the key words death receptors, TRAIL (tumor necrosis factor related apoptosis inducing ligand), FAS, bladder, prostate, renal and cancer was done to obtain information for review. A brief overview of the TRAIL and FAS death receptor pathways, and their relationship to apoptosis is described. Mechanisms that lead to nonfunction of these pathways and how they may contribute to tumorigenesis are linked. Current efforts to target death receptor pathways as a therapeutic strategy are highlighted.

RESULTS: Activation of tumor cell expressing death receptors by cytotoxic immune cells is the main mechanism by which the immune system eliminates malignant cells. Death receptor triggering induces a caspase cascade, leading to tumor cell apoptosis. Receptor gene mutation or hypermethylation, decoy receptor or splice variant over expression, and downstream inhibitor interference are examples of the ways that normal pathway functioning is lost in cancers of the bladder and prostate. Targeting death receptors directly through synthetic ligand administration and blocking downstream inhibitor molecules with siRNA or antisense oligonucleotides represent novel therapeutic strategies under development.

CONCLUSIONS: Research into the death receptor pathways has demonstrated the key role that pathway aberrations have in the initiation and progression of malignancies of the bladder, prostate and kidney. This new understanding has resulted in exciting approaches to restore the functionality of these pathways as a novel therapeutic strategy.

Relevância:

10.00% 10.00%

Publicador: