18 resultados para 4-nitroanthranilic acid
Resumo:
Polymorphism of crystalline drugs is a common phenomenon. However, the number of reported polymorphic cocrystals is very limited. In this work, the synthesis and solid-state characterization of a polymorphic cocrystal composed of sulfadimidine (SD) and 4-aminosalicylic acid (4-ASA) is reported for the first time. By liquid-assisted milling, the SD:4-ASA 1:1 form I cocrystal, the structure of which has been previously reported, was formed. By spray drying, a new polymorphic form (form II) of the SD:4-ASA 1:1 cocrystal was discovered which could also be obtained by solvent evaporation from ethanol and acetone. Structure determination of the form II cocrystal was calculated using high-resolution X-ray powder diffraction. The solubility of the SD:4-ASA 1:1 cocrystal was dependent on the pH and predicted by a model established for a two amphoteric component cocrystal. The form I cocrystal was found to be thermodynamically more stable in aqueous solution than form II, which showed transformation to form I. Dissolution studies revealed that the dissolution rate of SD from both cocrystals was enhanced when compared with a physical equimolar mixture and pure SD.
An array-based study of reactivity under solvent-free mechanochemical conditions-insights and trends
Resumo:
An array-based approach is put forward to obtain insight into reactivity under mechanochemical solvent-free conditions. We describe a survey of sixty potential reactions between twelve metal salts MX2 {(M = Cu, X-2 = (OAc)(2), (HCO2)(2), (F3CCO2)(2), (acac)(2), (F(6)acac)(2), (NO3)(2), SO4; M = Ni, X-2 = (OAc)(2), (NO3)(2), SO4; M = Zn, X-2 (OAc)(2), (NO3)(2)} and five bridging organic ligands {isonicotinic acid (HINA), 1,4-benzenedicarboxylic acid (H2BDC), acetylenedicarboxylic acid (H(2)ADC), 1,3,5-benzenetricarboxylic acid (H3BTC), 4,4'-bipyridyl (BIPY). Reaction conditions involved a ball mill, applied for 15 min at 30 Hz, without external heating. When examined by XRPD, forty of the combinations gave detectable reactions, thirty-eight with crystalline products. Of these, twenty-nine reactions were quantitative (consuming all of at least one reactant). Comparison of XRPD patterns with patterns simulated from single crystal X-ray diffraction data in the Cambridge Structural Database allowed structural identification of six products. Of particular interest are the microporous framework materials [Cu(INA)(2)] and [Cu-3(BTC)(2)] (HKUST-1) obtained by reaction of the corresponding carboxylic acids with copper acetate. Other non-porous polymers with 3-dimensional connectivity, [Ni(ADC)(H2O)(4)], or 1-dimensional connectivity, [Cu(acac)(2)(BIPY)] and [Cu(F6acac)(BIPY)] were also obtained. Reaction between zinc acetate and H2ADC gave a new product which had not previously been characterised by single-crystal X-ray crystallography, but whose XRPD pattern suggests that it is isostructural with the known nickel polymer [Ni(ADC)(H2O)(4)]. Two further isostructural nickel and zinc products were obtained in reactions between HINA and nickel nitrate and zinc nitrate. Trends observed within the array are discussed. Copper acetate and copper formate were the most effective starting materials for reaction with carboxylic acids, potentially related to the basicity of their anions and the solvating effects of the formic and acetic acid byproducts. Amongst the ligands there was a general negative corelation between melting point and reactivity. The issue of pore templating in microporous phases and the generation of new structures is also discussed in relation to the Cu(INA)(2), Cu-3(BTC)(2) and nickel nitrate-BIPY systems. Overall, the study suggests that mechanochemical reactivity between metal salts and organic ligands under solvent free conditions is remarkably general. Use of array-based approaches as demonstrated here is advocated a useful way to reveal underlying trends in reactivity under solvent free mechanochemical conditions and to highlight particular cases for more detailed study.
Resumo:
Lanthanide(III) complexes of p-nitrobenzenesulfonic acid, Ln(p-NBSA)(3), m-nitrobenzenesulfonic acid, Ln(m-NBSA)(3), and 2,4-nitrobenzenesulfonic acid, Ln(2,4-NBSA)(3), were prepared, characterized and examined as catalyst for the nitration of benzene, toluene, xylenes, naphthalene, bromobenzene and chlorobenzene. The initial screening of the catalysts showed that lanthanum(III) complexes were more effective than the corresponding ytterbium(III) complexes, and that catalysts containing the bulky 2,4-NBSA ligand were less effective than the catalyst containing p-NBSA (nosylate) or m-NBSA ligands. Examination of a series of Ln(p-NBSA)(3) and Ln(m-NBSA)(3) catalysts revealed that there is a clear correlation between the ionic radii of the lanthanide(III) ions and the yields of nitration, with the lighter lanthanides being more effective. The X-ray single crystal structure of Yb(m-NBSA)(3).6H(2)O shows that two m-NBSA ligands are directly bound to the metal centre while the third ligand is not located in the first coordination sphere, but it is hydrogen bonded to one of the water molecules which is coordinated to ytterbium(III). NMR studies suggest that this structure is preserved under the conditions used in the nitration reaction. The structure of Yb(m-NBSA)(3) is markedly different from the structure of the well-known ytterbium(III) triflate catalyst. The coordination of the nitrobenzenesulfonate counterion to the lanthanide(III) ion suggests that steric effects might play an important role in determining the efficiency of these novel nitration catalysts. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004).
Resumo:
Background and purpose: W/Wv and wild-type murine bladders were studied to determine whether the W/Wv phenotype, which causes a reduction in, but not abolition of, tyrosine kinase activity, is a useful tool to study the function of bladder interstitial cells of Cajal (ICC).
Experimental approach: Immunohistochemistry, tension recordings and microelectrode recordings of membrane potential were performed on wild-type and mutant bladders.
Key results: Wild-type and W/Wv detrusors contained c-Kit- and vimentin-immunopositive cells in comparable quantities, distribution and morphology. Electrical field stimulation evoked tetrodotoxin-sensitive contractions in wild-type and W/Wv detrusor strips. Atropine reduced wild-type responses by 50% whereas a 25% reduction occurred in W/Wv strips. The atropine-insensitive component was blocked by pyridoxal-5-phosphate-6-azophenyl-2',4'-disulphonic acid in both tissue types. Wild-type and W/Wv detrusors had similar resting membrane potentials of -48 mV. Spontaneous electrical activity in both tissue types comprised action potentials and unitary potentials. Action potentials were nifedipine-sensitive whereas unitary potentials were not. Excitatory junction potentials were evoked by single pulses in both tissues. These were reduced by atropine in wild-type tissues but not in W/Wv preparations. The atropine-insensitive component was abolished by pyridoxal-5-phosphate-6-azophenyl-2',4'-disulphonic acid in both preparations.
Conclusions and implications: Bladders from W/Wv mice contain c-Kit- and vimentin-immunopositive ICC. There are similarities in the electrical and contractile properties of W/Wv and wild-type detrusors. However, significant differences were found in the pharmacology of the responses to neurogenic stimulation with an apparent up-regulation of the purinergic component. These findings indicate that the W/Wv strain may not be the best model to study ICC function in the bladder.
Resumo:
The new complexes [Pt(dppp)(py)(2)][OTf](2), 1, [Pt(dppp)(2-ap)(2)][OTf](2), 2, [(dppp)Pt(mu -OH){mu -NH(C5H3N)NH2}Pt(dppp)][OTf](2), 3 (py=pyridine, 2-ap=2-aminopyridine, NH(C5H3N)NH2=2,6-diaminopyridine anion, dppp = 1,3-bis(diphenylphosphino)propane, OTf=O3SCF3) have been prepared via reactions between [Pt(dppp)(OTf)(2)] and pyridine, 2-aminopyridine or 2,6-diaminopyridine (2,6-dap) respectively. The amines exhibit a range of co-ordination modes. Pyridine and 2-aminopyridine co-ordinate to platinum through endo-nitrogen atoms in complexes 1 and 2, the latter existing as a pair of rotomers due to the steric hindrance introduced by the 2-substituent. However, 2,6-diaminopyridine co-ordinates to platinum through the exo-nitrogen of one amino group, to give the unusual mu -amido complex 3. Reaction of the known orotate chelate complex [Pt(PEt3)(2)(N,O-HL)] [HL=orotate, the dianion of 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid (orotic acid)] with 2,6-dap gave [Pt(PEt3)(2)(2,6-dap)(N-HL)] 4, which contains an unconventional monodentate orotate ligand. In this co-ordination mode the orotate retains an ADA hydrogen bonding site and was found to co-crystallise with 2,6-dap via complementary ADA:DAD triple hydrogen bonds to give [Pt(PEt3)(2)(N-HL)(2,6-dap)].2,6-dap, 5. Complex 5 exhibits a helical chain structure of associated [1+1] adducts in the solid state.
Resumo:
The new complexes [NEt3H][M(HL)(cod)] (M = Rh 1 or Ir 2; H3L = 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid, erotic acid; cod = cycloocta-1,5-diene) have been prepared by the reaction between [M2Cl2(cod)(2)] and erotic acid in dichloromethane in the presence of Ag2O and NEt3. They crystallise as dichloromethane adducts 1 . CH2Cl2 and 2 . CH2Cl2 from dichloromethane-hexane solutions. These isomorphous structures contain doubly hydrogen-bonded dimers, with additional hydrogen bonding to NEt3H+ cations and bridging CH2Cl2 molecules to form tapes. The use of (NBu4OH)-O-n instead of NEt3 gave the related complex [NBu4n][Rh(HL)(cod)] 1' which has an innocent cation not capable of forming strong hydrogen bonds and in contrast to 1 exists as discrete doubly hydrogen-bonded dimers. Complex 1' cocrystallises with 2,6-diaminopyridine (dap) via complementary triple hydrogen bonds to give [NBu4n][Rh(HL)(cod)]. dap . CH2Cl2 3. Complex 3 exhibits an extended sheet structure of associated [2 + 2] units, with layers of NBu4n, cations separating the sheets. These structural data together with those reported previously for platinum orotate complexes suggest that the steric requirements of the other ligands co-ordinated to the metal are important in influencing their hydrogen-bonding abilities. The solvent of crystallisation, the hydrogen-bonding propensity of the coligand and the nature of the counter ion also determine the type of association in the solid state.
Resumo:
After demonstrating the lack of effectiveness of standard antibiotics against the acquired antibiotic resistance of Bacillus cereus (NCTC 10989), Escherichia coli (NCTC 1186), and Staphylococcus aureus (ATCC 12715), we showed that the following natural substances were antibacterial against these resistant pathogens: cinnamon oil, oregano oil, thyme oil, carvacrol, (S)-perillaldehyde, 3,4-dihydroxybenzoic acid (beta-resorcylic acid), and 3,4-dihydroxyphenethylamine (dopamine). Exposure of the three pathogens to a dilution series of the test compounds showed that oregano oil was the most active substance. The oils and pure compounds exhibited exceptional activity against B. cereus vegetative cells, with oregano oil being active at nanogram, per milliliter levels. In contrast, activities against B. cereus spores were very low. Activities of the test compounds were in the following approximate order: oregano oil > thyme oil approximate to carvacrol > cinnamon oil > perillaldehyde > dopamine > beta-resorcylic acid. The order of susceptibilities of the pathogens to inactivation was as follows: B. cereus (vegetative) much greater than S. aureus approximate to E. coli much greater than B. cereus (spores). Some of the test substances may be effective against antibiotic-resistant bacteria in foods and feeds.
Resumo:
The bacterium Rhodococcus rhodochrous NCIMB 13064, isolated from an industrial site, could use a wide range of 1-haloalkanes as sole carbon source but apparently utilized several different mechanisms simultaneously for assimilation of substrate. Catabolism of 1-chlorobutane occurred mainly by attack at the C-1 atom by a hydrolytic dehalogenase with the formation of butanol which was metabolized via butyric acid. The detection of small amounts of gamma-butyrolactone in the medium suggested that some oxygenase attack at C-4 also occurred, leading to the formation of 4-chlorobutyric acid which subsequently lactonized chemically to gamma-butyrolactone. Although 1-chlorobutane-grown cells exhibited little dehalogenase activity on 1-chloroalkanes with chain lengths above C-10, the organism utilized such compounds as growth substrates with the release of chloride. Concomitantly, gamma-butyrolactone accumulated to 1 mM in the culture medium with 1-chlorohexadecane as substrate. Traces of 4-hydroxybutyric acid were also detected. It is suggested that attack on the long-chain chloroalkane is initiated by an oxygenase at the non-halogenated end of the molecule leading to the formation of an omega-chlorofatty acid. This is degraded by beta-oxidation to 4-chlorobutyric acid which is chemically lactonized to gamma-butyrolactone which is only slowly further catabolized via 4-hydroxybutyric acid and succinic acid. However, release of chloride into the medium during growth on long-chain chloroalkanes was insufficient to account for all the halogen present in the substrate. Analysis of the fatty acid composition of 1-chlorohexadecane-grown cells indicated that chlorofatty acids comprised 75% of the total fatty acid content with C-14:0, C-16:0, C-16:1, and C-18:1 acids predominating. Thus the incorporation of 16-chlorohexadecanoic acid, the product of oxygenase attack directly into cellular lipid represents a third route of chloroalkane assimilation. This pathway accounts at least in part for the incomplete mineralization of long-chain chloroalkane substrates. This is the first report of the coexistence of a dehalogenase and the ability to incorporate long-chain haloalkanes into the lipid fraction within a single organism and raises important questions regarding the biological treatment of haloalkane containing effluents.
Resumo:
Burkholderia cenocepacia is a gram-negative opportunistic pathogen that belongs to the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly within phagocytic cells, and some epidemic strains produce a brown melanin-like pigment that can scavenge free radicals, resulting in the attenuation of the host cell oxidative burst. In this work, we demonstrate that the brown pigment produced by B. cenocepacia C5424 is synthesized from a homogentisate (HGA) precursor. The disruption of BCAL0207 (hppD) by insertional inactivation resulted in loss of pigmentation. Steady-state kinetic analysis of the BCAL0207 gene product demonstrated that it has 4-hydroxyphenylpyruvic acid dioxygenase (HppD) activity. Pigmentation could be restored by complementation providing hppD in trans. The hppD mutant was resistant to paraquat challenge but sensitive to H2O2 and to extracellularly generated superoxide anions. Infection experiments in RAW 264.7 murine macrophages showed that the nonpigmented bacteria colocalized in a dextran-positive vacuole, suggesting that they are being trafficked to the lysosome. In contrast, the wild-type strain did not localize with dextran. Colocalization of the nonpigmented strain with dextran was reduced in the presence of the NADPH oxidase inhibitor diphenyleneiodonium, and also the inducible nitric oxide inhibitor aminoguanidine. Together, these observations suggest that the brown pigment produced by B. cenocepacia C5424 is a pyomelanin synthesized from an HGA intermediate that is capable of protecting the organism from in vitro and in vivo sources of oxidative stress.
Resumo:
Biodegradable amphiphilic diblock copolymers based on an aliphatic ester block and various hydrophilic methacrylic monomers were synthesized using a novel hydroxyl-functionalized trithiocarbonate-based chain transfer agent. One protocol involved the one-pot simultaneous ring-opening polymerization (ROP) of the biodegradable monomer (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (L-lactide, LA) and reversible addition–fragmentation chain transfer (RAFT) polymerization of 2-(dimethylamino)ethyl methacrylate (DMA) or oligo(ethylene glycol) methacrylate (OEGMA) monomer, with 4-dimethylaminopyridine being used as the ROP catalyst and 2,2′-azobis(isobutyronitrile) as the initiator for the RAFT polymerization. Alternatively, a two-step protocol involving the initial polymerization of LA followed by the polymerization of DMA, glycerol monomethacrylate or 2-(methacryloyloxy)ethyl phosphorylcholine using 4,4′-azobis(4-cyanovaleric acid) as a RAFT initiator was also explored. Using a solvent switch processing step, these amphiphilic diblock copolymers self-assemble in dilute aqueous solution. Their self-assembly provides various copolymer morphologies depending on the block compositions, as judged by transmission electron microscopy and dynamic light scattering. Two novel disulfide-functionalized PLA-branched block copolymers were also synthesized using simultaneous ROP of LA and RAFT copolymerization of OEGMA or DMA with a disulfide-based dimethacrylate. The disulfide bonds were reductively cleaved using tributyl phosphine to generate reactive thiol groups. Thiol–ene chemistry was utilized for further derivatization with thiol-based biologically important molecules and heavy metals for tissue engineering or bioimaging applications, respectively.
Resumo:
4-Amino-5-hexynoic acid is efficiently synthesised in eight steps (overall yield 10%) from commercially available (S)-glutamic acid. The key step was conversion of an aldehyde to an acetylene using diethylmethydiazophosphonate.