28 resultados para 320301 Clinical Chemistry
Resumo:
A study was performed to determine if targeted metabolic profiling of cattle sera could be used to establish a predictive tool for identifying hormone misuse in cattle. Metabolites were assayed in heifers (n ) 5) treated with nortestosterone decanoate (0.85 mg/kg body weight), untreated heifers (n ) 5), steers (n ) 5) treated with oestradiol benzoate (0.15 mg/kg body weight) and untreated steers (n ) 5). Treatments were administered on days 0, 14, and 28 throughout a 42 day study period. Two support vector machines (SVMs) were trained, respectively, from heifer and steer data to identify hormonetreated animals. Performance of both SVM classifiers were evaluated by sensitivity and specificity of treatment prediction. The SVM trained on steer data achieved 97.33% sensitivity and 93.85% specificity while the one on heifer data achieved 94.67% sensitivity and 87.69% specificity. Solutions of SVM classifiers were further exploited to determine those days when classification accuracy of the SVM was most reliable. For heifers and steers, days 17-35 were determined to be the most selective. In summary, bioinformatics applied to targeted metabolic profiles generated from standard clinical chemistry analyses, has yielded an accurate, inexpensive, high-throughput test for predicting steroid abuse in cattle.
Resumo:
Background: Vitamin B2 exists in blood as riboflavin and its cofactors, flavin mononucleotide (FMN) and FAD. The erythrocyte glutathione reductase activation coefficient (EGRAC) has traditionally been used to assess vitamin B2 status in humans. We investigated the relationships of EGRAC and plasma and erythrocyte concentrations of riboflavin, FMN, and FAD in elderly volunteers and their responses to riboflavin administration. Methods: EGRAC and plasma and erythrocyte concentrations of riboflavin, FMN, and FAD were determined in 124 healthy individuals with a mean age of 69 years. The same measurements were made in a subgroup of 46 individuals with EGRAC 1.20 who participated in a randomized double-blind 12-week intervention study and received riboflavin (1.6 mg/day; n = 23) or placebo (n = 23). Results: Median plasma concentrations were 10.5 nmol/L for riboflavin, 6.6 nmol/L for FMN, and 74 nmol/L for FAD. In erythrocytes, there were only trace amounts of riboflavin, whereas median FMN and FAD concentrations were 44 and 469 nmol/L, respectively. Erythrocyte FMN and FAD correlated with each other and with EGRAC and plasma riboflavin (P
Resumo:
Background: Studies investigating the relationship between plasma total homocysteine (tHcy) and vascular disease usually rely on a single measurement. Little information is available, however, on the seasonal variability of plasma tHcy. The aim of this study was to investigate the seasonal variation in fasting plasma tHcy and related B-vitamin intake and status in a group of people who did not consume fortified foods or take B-vitamin supplements. Methods: In this longitudinal study, a group of 22 healthy people were followed for 1 year. A fasting blood sample and dietary information were collected from each individual every 3 months, i.e., at the end of each season. Results: There was no significant seasonal variation in plasma tHcy or in B-vitamin intake or status with the exception of red cell folate (significantly lower in spring compared with autumn or winter) and serum folate (significantly lower in spring compared with the other seasons). Although the between-person variation in plasma tHcy was high (47%), the within-person variation was low (11%). This low variation, combined with the low methodologic imprecision of 3.8%, yielded a high reliability coefficient for plasma tHcy (0.97). Conclusions: Although there was a small seasonal variation in folate status, there was no corresponding seasonal variation in plasma tHcy. The high reliability coefficient for plasma tHcy suggests that a single measurement is reflective of an individual’s average plasma tHcy concentration, thus indicating its usefulness as a potential predictor of disease. This, however, needs to be confirmed in different subgroups of the population.
Resumo:
Background: In many countries current recommendations are that women take a daily 400ug folic acid supplement, from before conception until the end of the 12th week of gestation, for the prevention of neural tube defects. Low folate status is associated with an elevated concentration of plasma total homocysteine (tHcy), a risk factor that is associated with pregnancy complications such as pre-eclampsia. Methods: In a longitudinal study, tHcy and corresponding folate status were determined in 101 pregnant women at 12, 20 and 35 weeks of gestation, in 35 non-pregnant control subjects sampled conconcurrently, and in a subgroup (n=21 pregnant, 19 non-pregnant women) at 3 days post-partum. Results: Plasma tHcy concentrations were significantly lower throughout pregnancy compared with control subjects, with values lowest in the 2nd trimester before increasing toward non-pregnant values in the 3rd trimester. Importantly, tHcy concentrations were lower in pregnant women taking folic acid supplements compared to those not, an effect which reached significance in the 3rd trimester (5.25 umol/l v 6.89 umol/l, P <0.05). Furthermore, during the 3rd trimester, tHcy concentrations were significantly higher in pregnant women with a history of miscarriage compared to those with no previous history (7.32 umol/l v 5.62 uÂmol/l, P <0.01). Conclusion: This is the first longitudinal study to show that homocysteine levels rise in late pregnancy towards non-pregnant levels; a rise which can be limited by enhancing folate status through continued folic acid supplementation. These results indicate a potential role for continued folic acid supplementation in reducing pregnancy complications associated with hyperhomocysteinaemia.
Resumo:
Increased plasma homocysteine is an independent risk factor for cardiovascular disease. We have investigated homocysteine and B-group vitamin levels in renal transplant patients. Fasting blood was collected from 55 renal transplant recipients with good renal function and 32 age/sex matched control subjects. Total homocysteine was increased in transplant recipients in comparison to controls (10.9+/-1.5 vs. 6.7+/-1.3 micromol/l, P < 0.001). There was no difference in homocysteine between patients receiving cyclosporin (n = 39, homocysteine 11.0+/-1.5 micromol/l) and patients receiving prednisolone + azathioprine (n = 16, 10.8+/-1.6 micromol/l, mean+/-S.D.), although there was a significant correlation between homocysteine and serum cyclosporin concentration in the sub-group of patients receiving that immunosuppressive regimen (r = 0.42, P < 0.05). Levels of B-group vitamins were similar in patients and controls. Plasma homocysteine is increased in renal transplant recipients even in the presence of minor degrees of renal impairment and normal levels of B-group vitamins.
Resumo:
Background: Epidermal growth factor receptor gene (EGFR) variants may be useful markers for identifying responders to gefitinib and erlotinib, small-molecule tyrosine kinase inhibitors of EGFR; therefore, sensitive and cost-effective assays are needed to detect EGFR variants in routine clinical samples. We have developed a partially denaturing HPLC (pDHPLC) assay that is superior to direct sequencing with respect to detection limits, costs, and time requirements.