115 resultados para 270
Resumo:
Genetic variation in the serotonin 2A receptor (HTR2A) has been associated with both schizophrenia and suicidal behavior. Our sample comprised 270 Irish high-density schizophrenia families (n = 1,408 subjects, including 755 with psychotic illness). Diagnoses were generated using a modified SCID. All patients who had at least one episode of psychosis were rated on the Operation Criteria Checklist for Psychotic Illness (OPCRIT). Lifetime history of suicidal ideation was determined from medical records and psychiatric interviews and was scored in the OPCRIT. Twelve SNPs were selected for study. Ten of these were tagSNPs derived from HapMap data, along with His452Tyr and T102C. We tested for association with psychotic illness as a whole, as well as stratified by the presence of suicidal ideation, using FBAT and PDTPHASE. Single-marker as well as haplotype-based tests using a
Resumo:
Background: Several lines of evidence suggest that the clinical heterogeneity of schizophrenia is due to genetic heterogeneity. Genetic heterogeneity may decrease the signal-to-noise ratio in linkage and association studies. Therefore, linkage studies of clinically homogeneous classes of psychotic illness may result in greater power to detect at least some loci.
Resumo:
Peat bogs represent unique ecosystems that are under particular threat from fragmentation due to peat harvesting, with only 38% of the original peatland in Europe remaining intact and unaffected by peat cutting, drainage and silviculture. In this study, we have used microsatellite markers to determine levels and patterns of genetic diversity in both cut and uncut natural populations of the peat moss Polytrichum commune. Overall diversity levels suggest that there is more genetic variation present than had previously been assumed for bryophytes. Despite this, diversity values from completely cut bogs were found to be lower than those from uncut peatlands (average 0.729 versus 0.880). In addition, the genetic diversity was more highly structured in the cut populations, further suggesting that genetic drift is already affecting genetic diversity in peat bogs subjected to fragmentation.
Resumo:
The high level of escapes from Atlantic salmon farms, up to two million fishes per year in the North Atlantic, has raised concern about the potential impact on wild populations. We report on a twogeneration experiment examining the estimated lifetime successes, relative to wild natives, of farm, F1 and F2 hybrids and BC1 backcrosses to wild and farm salmon. Offspring of farm and hybrids (i.e. all F1 , F2 and BC1 groups) showed reduced survival compared with wild salmon but grew faster as juveniles and displaced wild parr, which as a group were significantly smaller. Where suitable habitat for these emigrant parr is absent, this competition would result in reduced wild smolt production. In the experimental conditions, where emigrants survived downstream, the relative estimated lifetime success ranged from 2% (farm) to 89% (BC1 wild) of that of wild salmon, indicating additive genetic variation for survival . Wild salmon primarily returned to fresh water after one sea winter (1SW) but farm and hybrids produced proportionately more 2SW salmon. However, lower overall survival means that this would result in reduced recruitment despite increased 2SW fecundity. We thus demonstrate that interaction of farm with wild salmon results in lowered fitness, with repeated escapes causing cumulative fitness depression and potentially an extinction vortex in vulnerable populations.
Resumo:
Parasites can structure biological communities directly through population regulation and indirectly by processes such as apparent competition. However, the role of parasites in the process of biological invasion is less well understood and mechanisms of parasite mediation of predation among hosts are unclear. Mutual predation between native and invading species is an important factor in determining the outcome of invasions in freshwater amphipod communities. Here, we show that parasites mediate mutual intraguild predation among native and invading species and may thereby facilitate the invasion process. We find that the native amphipod Gammarus duebeni celticus is host to a microsporidian parasite, Pleistophora sp. (new species), with a frequency of infection of 0-90%. However, the parasite does not infect three invading species, G. tigrinus, G. pulex and Crangonyx pseudogracilis. In field and laboratory manipulations, we show that the parasite exhibits cryptic virulence: the parasite does not affect host fitness in single-species populations, but virulence becomes apparent when the native and invading species interact. That is, infection has no direct effect on G. d. celticus survivorship, size or fecundity; however, in mixed-species experiments, parasitized natives show a reduced capacity to prey on the smaller invading species and are more likely to be preyed upon by the largest invading species. Thus, by altering dominance relationships and hierarchies of mutual predation, parasitism strongly influences, and has the potential to change, the outcome of biological invasions.
Resumo:
A series of bimetallic Ru-containing monometallic and bimetallic catalysts were prepared and tested for their activity for the hydrogenation of 2-butanone to 2-butanol at 30 °C and 3 bar H2. RuPt bimetallic catalysts were the most active for the reaction, with a ratio of 5 wt% Ru:1 wt% Pt on activated carbon (AC) found to be optimum. The activity of this bimetallic catalyst was more than double that of the sum of the activities of the monometallic Ru and Pt catalysts, providing evidence of a “bimetallic” effect. Structural analysis of the bimetallic catalysts revealed that they consisted of clusters of particles of the order of 1–2 nm. Extended X-ray absorption fine structure analysis showed that there were two types of particle on the surface of the bimetallic RuPt catalyst, specifically monometallic Ru and bimetallic RuPt particles. For the bimetallic particles, it was possible to fit the data with a model in which a Ru core of 1.1 nm is enclosed by two Pt-rich layers, the outer layer containing only 13 at% Ru. Pretreatment of the monometallic and bimetallic catalysts in hydrogen had a significant effect on the activity. Both the bimetallic and monometallic Ru-based catalysts showed a trend of decreasing activity with increasing temperature of prereduction in hydrogen. This loss of activity was almost fully reversible by exposure of the catalysts to air after reduction. The changing activity with exposure to different gas phase environments could not be attributed to changes in particle size or surface composition. It is proposed that the introduction of hydrogen results in a gradual smoothing of the surface and loss of defect sites; this process being reversible on introduction of air. These defect sites are particularly important for the dissociative adsorption of hydrogen, potentially the rate-determining step in this reaction.
Resumo:
BRCA1 encodes a tumor suppressor gene that is mutated in the germ line of women with a genetic predisposition to breast and ovarian cancer. BRCA1 has been implicated in a number of important cellular functions including DNA damage repair, transcriptional regulation, cell cycle control, and ubiquitination. Using an Affymetrix U95A microarray, IRF-7 was identified as a BRCA1 transcriptional target and was also shown to be synergistically up-regulated by BRCA1 specifically in the presence of IFN-gamma, coincident with the synergistic induction of apoptosis. We show that BRCA1, signal transducer and activator of transcription (STAT)-1, and STAT2 are all required for the induction of IRF-7 following stimulation with IFN-gamma. We also show that the induction of IRF-7 by BRCA1 and IFN-gamma is dependent on the type I IFNs, IFN-alpha and IFN-beta. We show that BRCA1 is required for the up-regulation of STAT1, STAT2, and the type I IFNs in response to IFN-gamma. We show that BRCA1 is localized at the promoters of the molecules involved in type I IFN signaling leading to their up-regulation. Blocking this intermediary type I IFN step using specific antisera shows the requirement for IFN-alpha and IFN-beta in the induction of IRF-7 and apoptosis. Finally, we outline a mechanism for the BRCA1/IFN-gamma regulation of target genes involved in the innate immune response, which is dependent on type I IFN signaling.