48 resultados para 13078-029
Resumo:
Abstract There is considerable interest in developing medical devices that provide controlled delivery of biologically active agents, for example, to reduce the incidence of device-related infection. Silicone elastomers are one of the commonest biomaterials used in medical device production. However, they have a relatively high coefficient of friction and the resulting lack of lubricity can cause pain and tissue damage on device insertion and removal. Novel silicone cross-linking agents have recently been reported that produce inherently ‘self-lubricating’ silicone elastomers with very low coefficients of friction. In this study, the model antibacterial drug metronidazole has been incorporated into these self-lubricating silicone elastomers to produce a novel bioactive biomaterial. The in vitro release characteristics of the bioactive component were evaluated as a function of cross-linker composition and drug loading. Although conventional matrix-type release kinetics were observed for metronidazole from the silicone systems, it was also observed that increasing the concentration of the cross-linking agent responsible for the lubricious character (tetra(oleyloxy)silane) relative to that of the standard non-lubricious cross-linking agent (tetrapropoxysilane) produced an increase in the metronidazole flux rate by up to 65% for a specified drug loading. The results highlight the potential for developing lubricious silicone medical devices with enhanced drug release characteristics.
Resumo:
Second-generation carnosine analogs bearing the histidyl-hydrazide moiety have been synthesized and tested for their efficiency in scavenging malondialdehyde (MDA) derived from lipid peroxidation and for their ability to reverse the glycation process in the glucose-ethylamine Schiff base model. The data obtained indicate that this class of compounds maintains the activity profile of carnosine and is a suitable candidate for the treatment of disorders caused by oxidative stress.
Resumo:
Chemical modification of proteins by reactive oxygen species affects protein structure, function and turnover during aging and chronic disease. Some of this damage is direct, for example by oxidation of amino acids in protein by peroxide or other reactive oxygen species, but autoxidation of ambient carbohydrates and lipids amplifies both the oxidative and chemical damage to protein and leads to formation of advanced glycoxidation and lipoxidation end-products (AGE/ALEs). In previous work, we have observed the oxidation of methionine during glycoxidation and lipoxidation reactions, and in the present work we set out to determine if methionine sulfoxide (MetSO) in protein was a more sensitive indicator of glycoxidative and lipoxidative damage than AGE/ALEs. We also investigated the sites of methionine oxidation in a model protein, ribonuclease A (RNase), in order to determine whether analysis of the site specificity of methionine oxidation in proteins could be used to indicate the source of the oxidative damage, i.e. carbohydrate or lipid. We describe here the development of an LC/MS/MS for quantification of methionine oxidation at specific sites in RNase during glycoxidation or lipoxidation by glucose or arachidonate, respectively. Glycoxidized and lipoxidized RNase were analyzed by tryptic digestion, followed by reversed phase HPLC and mass spectrometric analysis to quantify methionine and methionine sulfoxide containing peptides. We observed that: (1) compared to AGE/ALEs, methionine sulfoxide was a more sensitive biomarker of glycoxidative or lipoxidative damage to proteins; (2) regardless of oxidizable substrate, the relative rate of oxidation of methionine residues in RNase was Met(29) > Met(30) > Met(13), with Met(79) being resistant to oxidation; and (3) arachidonate produced a significantly greater yield of MetSO, compared to glucose. The methods developed here should be useful for assessing a protein's overall exposure to oxidative stress from a variety of sources in vivo. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The reaction mechanism and the rate-determining step (RDS) of the isomerisation of n-alkanes (C-4-C-6) over partially reduced MoO3 catalysts were studied through the effects of the addition of an alkene isomerisation catalyst (i.e. CoAlPO- 11). When an acidic CoAlPO- 11 sample was mechanically mixed with the MoO3, a decrease of the induction period and an increase of the steady-state conversion of n-butane to isobutane were observed. These data support previous assumptions that a bifunctional mechanism occurred over the partially reduced MoO3 (a complex nanoscale mixture of oxide-based phases) during n-butane isomerisation and that the RDS was the skeletal isomerisation of the linear butene intermediates. The only promotional effect of CoAlPO-11 on the activity of partially reduced MoO3 for C-5-C-6 alkane hydroisomerisation was a reduction of the induction period, as the RDS at steady-state conditions appeared to be dehydrogenation of the alkane in this case. However, lower yields of branched isomers were observed in this case, the reason of which is yet unclear. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
AIMS
The aim of this study was to investigate the in?uence of genetic polymorphisms in ABCB1 on the incidence of nephrotoxicity and tacrolimus dosage-requirements in paediatric patients following liver transplantation.
METHODS
Fifty-one paediatric liver transplant recipients receiving tacrolimus were genotyped for ABCB1 C1236>T, G2677>T and C3435>T polymorphisms. Dose-adjusted tacrolimus trough concentrations and estimated glomerular ?ltration rates (EGFR) indicative of renal toxicity were determined and correlated with the corresponding genotypes.
RESULTS
The present study revealed a higher incidence of the ABCB1 variant-alleles examined among patients with renal dysfunction (30% reduction in EGFR) at 6 months post-transplantation (1236T allele: 63.3% vs 37.5% in controls,P = 0.019; 2677T allele: 63.3% vs. 35.9%, p = 0.012; 3435T allele: 60% vs. 39.1%,P = 0.057). Carriers of the G2677->T variant allele also had a signi?cant reduction (%) in EGFR at 12 months post-transplant (mean difference = 22.6%; P = 0.031). Haplotype analysis showed a signi?cant association between T-T-T haplotypes and an increased incidence of nephrotoxicity at 6 months post-transplantation (haplotype-frequency = 52.9% in nephrotoxic patients vs 29.4% in controls; P = 0.029). Furthermore, G2677->T and C3435->T polymorphisms and T-T-T haplotypes were signi?cantly correlated with higher tacrolimus dose-adjusted pre-dose concentrations at various time points examined long after drug initiation.
CONCLUSIONS
These ?ndings suggest that ABCB1 polymorphisms in the native intestine signi?cantly in?uence tacrolimus dosage-requirement in the stable phase after transplantation. In addition, ABCB1 polymorphisms in paediatric liver transplant recipients may predispose them to nephrotoxicity over the ?rst year posttransplantation. Genotyping future transplant recipients for ABCB1 polymorphisms, therefore, could have the potential to individualize better tacrolimus immunosuppressive therapy and enhance drug safety
Resumo:
Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate:phosphate antiporters.
Anti-adherent and antifungal activities of surfactant-coated poly (ethylcyanoacrylate) nanoparticles
Resumo:
Application of non-drug-loaded poly(ethylcyanoacrylate) nanoparticles (NP) to buccal epithelial cells (BEC) imparted both anti-adherent and antifungal effects. NP prepared using emulsion polymerisation and stabilised using cationic, anionic and non-ionic surfactants decreased Candida albicans blastospore adhesion, an effect attributable to the peripheral coating of surfactant. Cetrimide and Pluronic (R) P 123 were shown to be most effective, producing mean percentage reductions in blastospore adherence of 52.7 and 37.0, respectively. Resultant zeta potential matched the polarity of the surfactant, with those stabilised using cetrimide being especially positive (+31.3 mV). Preparation using anionic surfactants was shown to be problematic, with low yield and wide particle size distribution. Evaluation of the antifungal effect of the peripheral coat was evaluated using zones of inhibition and viable counts assays. The former test revealed poor surfactant diffusion through agar, but did show evidence of limited kill. However, the latter method showed that cationic surfactants associated with NP produced high levels of kill, in contrast to those coated with anionic surfactants, where kill was not evident. Non-ionic surfactant-coated NP produced intermediate kill rates. Results demonstrate that surfactant-coated NP, particularly the cationic types, form the possible basis of a prophylactic formulation that primes the candidal target (BEC) against fungal adhesion and infection. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Red meat is long established as an important dietary source of protein and essential nutrients including iron, zinc and vitamin B12, yet recent reports that its consumption may increase the risk of cardiovascular disease (CVD) and colon cancer have led to a negative perception of the role of red meat in health. The aim of this paper is to review existing literature for both the risks and benefits of red meat consumption, focusing on case-control and prospective studies. Despite many studies reporting an association between red meat and the risk of CVD and colon cancer, several methodological limitations and inconsistencies were identified which may impact on the validity of their findings. Overall, there is no strong evidence to support the recent conclusion from the World Cancer Research Fund (WCRF) report that red meat has a convincing role to play in colon cancer. A substantial amount of evidence supports the role of lean red meat as a positive moderator of lipid profiles with recent Studies identifying it as a dietary source of the anti-inflammatory long chain (LC) n-3 PUFAs and conjugated linoleic acid (CIA). In conclusion. moderate consumption of lean red meat as part of a balanced diet is unlikely to increase risk for CVD or colon cancer, but may positively influence nutrient intakes and fatty acid profiles, thereby impacting positively on long-term health. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
PURPOSE: Retinitis pigmentosa (RP) causes hereditary blindness in adults (prevalence, approximately 1 in 4000). Each of the more than 30 causative genes identified to date are responsible for only a small percentage of cases. Genetic diagnosis via traditional methods is problematic, and a single test with a higher probability of detecting the causative mutation would be very beneficial for the clinician. The goal of this study therefore was to develop a high-throughput screen capable of detecting both known mutations and novel mutations within all genes implicated in autosomal recessive or simplex RP. DESIGN: Evaluation of diagnostic technology. PARTICIPANTS AND CONTROLS: Participants were 56 simplex and autosomal recessive RP patients, with 360 population controls unscreened for ophthalmic disease. METHODS: A custom genechip capable of resequencing all exons containing known mutations in 19 disease-associated genes was developed (RP genechip). A second, commercially available arrayed primer extension (APEX) system was used to screen 501 individual previously reported variants. The ability of these high-throughput approaches to identify pathogenic variants was assessed in a cohort of simplex and autosomal recessive RP patients. MAIN OUTCOME MEASURES: Number of mutations and potentially pathogenic variants identified. RESULTS: The RP genechip identified 44 sequence variants: 5 previously reported mutations; 22 known single nucleotide polymorphisms (SNPs); 11 novel, potentially pathogenic variants; and 6 novel SNPs. There was strong concordance with the APEX array, but only the RP genechip detected novel variants. For example, identification of a novel mutation in CRB1 revealed a patient, who also had a single previously known CRB1 mutation, to be a compound heterozygote. In some individuals, potentially pathogenic variants were discovered in more than one gene, consistent with the existence of disease modifier effects resulting from mutations at a second locus. CONCLUSIONS: The RP genechip provides the significant advantage of detecting novel variants and could be expected to detect at least one pathogenic variant in more than 50% of patients. The APEX array provides a reliable method to detect known pathogenic variants in autosomal recessive RP and simplex RP patients and is commercially available. High-throughput genotyping for RP is evolving into a clinically useful genetic diagnostic tool.
Resumo:
The vegetation history of the Faroe Islands has been investigated in numerous studies all broadly showing that the early-Holocene vegetation of the islands largely consisted of fellfield with gravely and rocky soils formed under a continental climate which shifted to an oceanic climate around 10,000 cal yr BP when grasses, sedges and finally shrubs began to dominant the islands. Here we present data from three lake sediment cores and show a much more detailed history from geochemical and isotope data. These data show that the Faroe Islands were deglaciated by the end of Younger Dryas (11,700 10,300 cal yr BP), at this time relatively high sedimentation rates with high delta C-13 imply poor soil development. delta C-13, Ti and chi data reveal a much more stable and warm mid-Holocene until 7410 cal yr BP characterised by increasing vegetation cover and build up of organic soils towards the Holocene thermal maximum around 7400 cal yr BP. The final meltdown of the Laurentide ice sheet around 7000 cal yr BP appears to have impacted both ocean and atmospheric circulation towards colder conditions on the Faroe Islands. This is inferred by enhanced weathering and increased deposition of surplus sulphur (sea spray) and erosion in the highland lakes from about 7400 cal yr BP. From 4190 cal yr BP further cooling is believed to have occurred as a consequence for increased soil erosion due to freeze/thaw sequences related to oceanic and atmospheric variability. This cooling trend appears to have advanced further from 3000 cal yr BR A short period around 1800 cal yr BP appears as a short warm and wet phase in between a general cooling characterised by significant soil erosion lasting until 725 cal yr BP. Interestingly, increased soil erosion seems to have begun at 1360 cal yr BP, thus significantly before the arrival of the first settlers on the Faroe Island around 1150 cal yr BP, although additional erosion took place around 1200 cal yr BP possibly as a consequence of human activities. Hence it appears that if humans caused a change in the Faroe landscape in terms of erosion they in fact accelerated a process that had already started. Soil erosion was a dominant landscape factor during the Little Ice Age, but climate related triggers can hardly be distinguished from human activities. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A reliable and cost-effective electrochemical method for the detection of deoxynivalenol (DON) in cereals and cereal-based food samples based on the use of a novel anti-DON Fab fragment is presented. The analytical system employed, Enzyme-Linked-Immunomagnetic-Electrochemical (ELIME) assay, is based on the use of immunomagnetic beads (IMBs) coupled with eight magnetized screen-printed electrodes (8-mScPEs) as electrochemical transducers.
Resumo:
Three experiments were conducted to test the effectiveness of different footbath solutions and regimens in the treatment of digital dermatitis (DD) in dairy cows. During the study, groups of cows walked through allocated footbath solutions after milking on 4 consecutive occasions. All cows were scored weekly for DD lesion stage on the hind feet during milking. A “transition grade” was assigned on the basis of whether the DD lesions improved (1) or deteriorated or did not improve (0) from week to week. This grade per cow was averaged for all cows in the group. In experiment 1, 118 cows were allocated to 1 of 3 footbath treatments for 5 wk: (1) 5% CuSO4 each week, (2) 2% ClO- each week, or (3) no footbath (control). The mean transition grade, and proportion of cows without DD lesions at the end of the trial were significantly higher for treatment 1 above (0.36, 0.13, and 0.11, respectively; standard error of the difference, SED=0.057). In experiment 2, 117 cows were allocated to 1 of 4 footbath treatment regimens for 8 wk: (1) 5% CuSO4 each week, (2) 2% CuSO4 each week, (3) 5% CuSO4 each fortnight, or (4) 2% CuSO4 each fortnight. For welfare reasons, cows allocated to the weekly and fortnightly footbath regimens had an average prevalence of >60% and =25% active DD at the start of the trial, respectively. Significantly more cows had no DD lesions (0.53 vs. 0.36, respectively; SED=0.049), and the mean transition grade of DD lesions was higher in the 5% compared with the 2% weekly CuSO4 treatment (0.52 vs. 0.38, respectively; SED=0.066). Similarly, significantly more cows had no DD lesions in the 5% compared with the 2% fortnightly CuSO4 treatments (0.64 vs. 0.47, respectively; SED=0.049). In experiment 3, 95 cows were allocated to 1 of 3 footbath treatments: (1) each week alternating 5% CuSO4 with 10% salt water, (2) each week alternating 5% CuSO4 with water, or (3) 5% CuSO4 each fortnight (control). After 10 wk, more cows had no DD in the salt water treatment than in the control treatment (0.35 vs. 0.26, respectively; SED=0.038), but levels of active lesions were higher for this treatment than in the other 2 treatments (0.17, 0.00, and 0.13, respectively; SED=0.029). Treatment did not affect mean transition grade of DD lesions. In conclusion, CuSO4 was the only footbath solution that was consistently effective for treatment of DD. In cases when DD prevalence was high, a footbath each week using 5% CuSO4 was the most effective treatment.
Resumo:
One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered. (C) 2006 Elsevier Ltd. All rights reserved.