113 resultados para 1167
Resumo:
Neural adaptation and inhibition are pervasive characteristics of the primate brain, and are probably understood better within the context of visual processing than any other sensory modality. These processes are thought to underlie illusions in which one motion affects the perceived direction of another, such as the direction aftereffect (DAE) and direction repulsion. The DAE describes how, following prolonged viewing of motion in one direction, the direction of a subsequently viewed test pattern is misperceived. In the case of direction repulsion, the direction difference between two transparently moving surfaces is over-estimated. Explanations of the DAE appeal to neural adaptation whilst direction repulsion is accounted for through lateral inhibition. Here we report on a new illusion, the Binary DAE, in which superimposed slow and fast dots moving in the same direction are perceived to move in different directions following adaptation to a mixed-speed stimulus. This new phenomenon is essentially a combination of the DAE and direction repulsion. Interestingly the magnitude of the binary DAE is greater than would be expected simply through a linear combination of the DAE and direction repulsion, suggesting that the mechanisms underlying these two phenomena interact in a non-linear fashion.
Resumo:
PURPOSE. To assess the prevalence of age-related macular degeneration (AMD) in a rural population in Northern India. METHODS. In a pilot feasibility study, 1443 people (median age, 60 years; 52% women), were identified from enumeration of the 50+ age group in 11 randomly sampled villages from a rural, periurban district of Haryana, Northern India. Of those identified, 87% attended an eye examination that included digital fundus photography. Fundus images were graded at a single reading center using definitions from the Wisconsin Age-Related Maculopathy Grading System. RESULTS. Fundus photographs were available for 1101 participants. Overall, 28.8% of participants had ungradable fundus images due to cataract. Including all with ungradable images in the denominator, the prevalence of soft drusen was 34.0% (95% confidence interval [CI] 26.1–42.9); of soft indistinct drusen, 2.2% (95% CI, 1.1–4.4); and of pigmentary irregularities, 10.8% (95% CI, 7.1–16.1). There were 15 (1.4%) cases of late-stage AMD (95% CI, 0.8–2.3) with the prevalence rising from 0.4% in the 50- to 59-year age range to 4.6% in those aged 70 years or older. CONCLUSIONS. Drusen and pigmentary irregularities are common among the rural northern Indian population. The prevalence of late AMD is similar to that encountered in Western settings and is likely to contribute significantly to the burden of vision loss in older people in the developing world.
Resumo:
Purpose. To determine the prevalence, nature, and degree of accommodative dysfunction among children with different types and severities of cerebral palsy (CP) in Northern Ireland. Methods. Ninety subjects with CP (aged 4–15 years) were recruited through the Northern Ireland CP Register (NICPR). Modified Nott dynamic retinoscopy was used to measure lag and lead of accommodation at three test distances: 25 cm (4 D), 16.7 cm (6 D), and 10 cm (10 D) with the distance correction in place. Accommodative function was also assessed in an age-matched control group (n = 125) for comparison. Each subject’s neurologic status was derived from the NICPR. Results. Children with CP demonstrate significantly reduced accommodative responses compared with their neurologically normal peers. Of the subjects with CP, 57.6% demonstrated an accommodative lag outside normal limits at one or more distances. Reduced accommodative responses were significantly associated with more severe motor and intellectual impairments (ANOVA P = 0.001, P < 0.01, respectively). Conclusions. Brain injury such as that present in CP has a significant impact on accommodative function. These findings have implications for the optometric care of children with CP and inform our understanding of the impact of early brain injury on visual development.
Resumo:
PURPOSE. To examine internal consistency, refine the response scale, and obtain a linear scoring system for the visual function instrument, the Daily Living Tasks Dependent on Vision (DLTV). METHODS. Data were available from 186 participants with a clinical diagnosis of AMD who completed the 22-item DLTV (DLTV-22) according to four-point ordinal response scale. An independent group of 386 participants with AMD were administered a reduced version of the DLTV with 11 items (DLTV-11), according to a five-point response scale. Rasch analysis was performed on both datasets and used to generate item statistics for measure order, response odds ratios per item and per person, and infit and outfit mean square statistics. The Rasch output from the DLTV-22 was examined to identify redundant items and for factorial validity and person item measure separation reliabilities. RESULTS. The average rating for the DLTV-22 changed monotonically with the magnitude of the latent person trait. The expected versus observed average measures were extremely close, with step calibrations evenly separated for the four-point ordinal scale. In the case of the DLTV-11, step calibrations were not as evenly separated, suggesting that the five-point scale should be reduced to either a four- or three-point scale. Five items in the DLTV-22 were removed, and all 17 remaining items had good infit and outfit mean squares. PCA with residuals from Rasch analysis identified two domains containing 7 and 10 items each. The domains had high person separation reliabilities (0.86 and 0.77 for domains 1 and 2, respectively) and item measure reliabilities (0.99 and 0.98 for domains 1 and 2, respectively). CONCLUSIONS. With the improved internal consistency, establishment of the accuracy and precision of the rating scale for the DLTV and the establishment of a valid domain structure we believe that it constitutes a useful instrument for assessing visual function in older adults with age-related macular degeneration.
Resumo:
PURPOSE: MicroRNAs (miRNAs) play a global role in regulating gene expression and have important tissue-specific functions. Little is known about their role in the retina. The purpose of this study was to establish the retinal expression of those miRNAs predicted to target genes involved in vision. METHODS: miRNAs potentially targeting important "retinal" genes, as defined by expression pattern and implication in disease, were predicted using a published algorithm (TargetScan; Envisioneering Medical Technologies, St. Louis, MO). The presence of candidate miRNAs in human and rat retinal RNA was assessed by RT-PCR. cDNA levels for each miRNA were determined by quantitative PCR. The ability to discriminate between miRNAs varying by a single nucleotide was assessed. The activity of miR-124 and miR-29 against predicted target sites in Rdh10 and Impdh1 was tested by cotransfection of miRNA mimics and luciferase reporter plasmids. RESULTS: Sixty-seven miRNAs were predicted to target one or more of the 320 retinal genes listed herein. All 11 candidate miRNAs tested were expressed in the retina, including miR-7, miR-124, miR135a, and miR135b. Relative levels of individual miRNAs were similar between rats and humans. The Rdh10 3'UTR, which contains a predicted miR-124 target site, mediated the inhibition of luciferase activity by miR-124 mimics in cell culture. CONCLUSIONS: Many miRNAs likely to regulate genes important for retinal function are present in the retina. Conservation of miRNA retinal expression patterns from rats to humans supports evidence from other tissues that disruption of miRNAs is a likely cause of a range of visual abnormalities.
Resumo:
PURPOSE. Vascular repair by marrow-derived endothelial progenitor cells (EPCs) is impaired during diabetes, although the precise mechanism of this dysfunction remains unknown. The hypothesis for the study was that progressive basement membrane (BM) modification by advanced glycation end products (AGEs) contributes to impairment of EPC reparative function after diabetes-related endothelial injury.
METHODS. EPCs isolated from peripheral blood were characterized by immunocytochemistry and flow cytometry. EPC interactions on native or AGE-modified fibronectin (AGE-FN) were studied for attachment and spreading, whereas chemotaxis to SDF-1 was assessed with the Dunn chamber assay. In addition, photoreactive agent-treated monolayers of retinal microvascular endothelial cells (RMECs) produced circumscribed areas of apoptosis and the ability of EPCs to “endothelialize” these wounds was evaluated.
RESULTS. EPC attachment and spreading on AGE-FN was reduced compared with control cells (P < 0.05–0.01) but was significantly restored by pretreatment with Arg-Gly-Asp (RGD). Chemotaxis of EPCs was abolished on AGE-FN but was reversed by treatment with exogenous RGD. On wounded RMEC monolayers, EPCs showed clustering at the wound site, compared with untreated regions (P < 0.001); AGE-FN significantly reduced this targeting response (P < 0.05). RGD supplementation enhanced EPC incorporation in the monolayer, as determined by EPC participation in tight junction formation and restoration of transendothelial electric resistance (TEER).
CONCLUSIONS. AGE-modification of vascular substrates impairs EPC adhesion, spreading, and migration; and alteration of the RGD integrin recognition motif plays a key role in these responses. The presence of AGE adducts on BM compromises repair by EPC with implications for vasodegeneration during diabetic microvasculopathy.
Resumo:
PURPOSE. Polymorphic variation in genes involved in regulation of the complement system has been implicated as a major cause of genetic risk, in addition to the LOC387715/HTRA1 locus and other environmental influences. Previous studies have identified polymorphisms in the complement component 2 (CC2) and factor B (CFB) genes, as potential functional variants associated with AMD, in particular CFB R32Q and CC2 rs547154, both of which share strong linkage disequilibrium (LD). METHODS. Data derived from the HapMap Project were used to select 18 haplotype-tagging SNPs across the extended CC2/ CFB region for genotyping, to measure the strength of LD in 318 patients with neovascular AMD and 243 age-matched control subjects to identify additional potential functional variants in addition to those originally reported. RESULTS. Strong LD was measured across this region as far as the superkiller viralicidic activity 2-like gene (SKIV2L). Nine SNPs were identified to be significantly associated with the genetic effect observed at this locus. Of these, a nonsynonymous coding variant SKIV2L R151Q (rs438999; OR, 0.48; 95% confidence interval [CI], 0.31- 0.74; P < 0.001), was in strong LD with CFB R32Q, rs641153 (r2 = 0.95) and may exert a functional effect. When assessed within a logistic regression model measuring the effects of genetic variation at the CFH and LOC387715/HTRA1 loci and smoking, the effect remained significant (OR, 0.38; 95% CI, 0.22- 0.65; P < 0.001). Additional variation identified within this region may also confer a weaker but independent effect and implicate additional genes within the pathogenesis of AMD. CONCLUSIONS. Because of the high level of LD within the extended CC2/CFB region, variation within SKIV2L may exert a functional effect in AMD. Copyright © Association for Research in Vision and Ophthalmology.