4 resultados para 1 : 1 resonances


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present nine newly observed transits of TrES-3, taken as part of a transit timing program using the RISE instrument on the Liverpool Telescope. A Markov-Chain Monte Carlo analysis was used to determine the planet star radius ratio and inclination of the system, which were found to be R-p/R-star = 0.1664(-0.0018)(+0.0011) and i = 81.73(-0.04)(+0.13), respectively, consistent with previous results. The central transit times and uncertainties were also calculated, using a residual-permutation algorithm as an independent check on the errors. A re-analysis of eight previously published TrES-3 light curves was conducted to determine the transit times and uncertainties using consistent techniques. Whilst the transit times were not found to be in agreement with a linear ephemeris, giving chi(2) = 35.07 for 15 degrees of freedom, we interpret this to be the result of systematics in the light curves rather than a real transit timing variation. This is because the light curves that show the largest deviation from a constant period either have relatively little out-of-transit coverage or have clear systematics. A new ephemeris was calculated using the transit times and was found to be T-c(0) = 2454632.62610 +/- 0.00006 HJD and P = 1.3061864 +/- 0.0000005 days. The transit times were then used to place upper mass limits as a function of the period ratio of a potential perturbing planet, showing that our data are sufficiently sensitive to have probed sub-Earth mass planets in both interior and exterior 2:1 resonances, assuming that the additional planet is in an initially circular orbit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present seven light curves of the exoplanet system HAT-P-3, taken as part of a transit timing programme using the rapid imager to search for exoplanets instrument on the Liverpool Telescope. The light curves are analysed using a Markov chain Monte Carlo algorithm to update the parameters of the system. The inclination is found to be i = 86.75+0.22-0.21°, the planet-star radius ratio to be Rp/R* = 0.1098+0.0010-0.0012 and the stellar radius to be R* = 0.834+0.018-0.026Rsolar, consistent with previous results but with a significant improvement in the precision. Central transit times and uncertainties for each light curve are also determined, and a residual permutation algorithm is used as an independent check on the errors. The transit times are found to be consistent with a linear ephemeris, and a new ephemeris is calculated as Tc(0) = 2454856.70118 +/- 0.00018 HJD and P = 2.899738 +/- 0.000007 d. Model timing residuals are fitted to the measured timing residuals to place upper mass limits for a hypothetical perturbing planet as a function of the period ratio. These show that we have probed for planets with masses as low as 0.33 and 1.81 M? in the interior and exterior 2:1 resonances, respectively, assuming the planets are initially in circular orbits.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dielectronic recombination has been investigated for Delta n = 1 resonances of ground-state Li+(1s(2)) and for Delta n = 0 resonances of metastable Li (+) (1s2s S-3). The ground-state spectrum shows three prominent transitions between 53 and 64 eV, while the metastable spectrum exhibits many transitions with energies

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that a spin-1/2 particle in the gravitational field of a massive body of radius R which slightly exceeds the Schwarzschild radius rs, possesses a dense spectrum of narrow resonances. Their lifetimes and density tend to infinity in the limit R → rs. We determine the cross section of the particle capture into these resonances and show that it is equal to the spin-1/2 absorption cross section for a Schwarzschild black hole. Thus black-hole properties may emerge in a non-singular static metric prior to the formation of a black hole.