2 resultados para 0703 Crop and Pasture Production


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing interest in the use of continuous housing systems for dairy cows, with various reasons put forward to advocate such systems. However, the welfare of dairy cows is typically perceived to be better within pasture-based systems, although such judgements are often not scientifically based. The aim of this review was to interrogate the existing scientific literature to compare the welfare, including health, of dairy cows in continuously housed and pasture-based systems. While summarising existing work, knowledge gaps and directions for future research are also identified. The scope of the review is broad, examining relevant topics under three main headings; health, behaviour, and physiology. Regarding health, cows on pasture-based systems had lower levels of lameness, hoof pathologies, hock lesions, mastitis, uterine disease, and mortality compared to cows on continuously housed systems. Pasture access also had benefits for dairy cow behaviour, in terms of grazing, improved lying / resting times, and lower levels of aggression. Moreover, when given the choice between pasture and indoor housing, cows showed an overall preference for pasture, particularly at night. However, the review highlighted the need for a deeper understanding of cow preference and behaviour. Potential areas for concern within pasture-based systems included physiological indicators of more severe negative energy balance, and in some situations, the potential for compromised welfare with exposure to unpredictable weather conditions. In summary, the results from this review highlight that there remain considerable animal welfare benefits from incorporating pasture access into dairy production systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plasma gas bubble-in-liquid method for high production of selectable reactive species using a nanosecond pulse generator has been developed. The gas of choice is fed through a hollow needle in a point-to-plate bubble discharge, enabling improved selection of reactive species. The increased interface reactions, between the gas-plasma and water through bubbles, give higher productivity. H2O2 was the predominant species produced using Ar plasma, while predominantly  and NO2 were generated using air plasma, in good agreement with the observed emission spectra. This method has nearly 100% selectivity for H2O2, with seven times higher production, and 92% selectivity for , with nearly twice the production, compared with a plasma above the water.