18 resultados para wet impregnation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
KF, LiF and CsF/A(2)O(3) catalysts with different loadings from 1 to 20 wt% were prepared using aqueous solutions of the alkaline fluoride compounds by wet impregnation of basic mesoporous MSU-type alumina. The catalysts were activated under At at 400 degrees C for 2 h and monitored by in situ XRD measurements. The catalysts were also characterized using several techniques: N-2 adsorption/desorption isotherms at -196 degrees C, FTIR, DR-UV-vis, CO2-TPD, XRD, Al-27 CP/MAS NMR. These characterizations led to the conclusion that the deposition of alkaline fluorides on the alumina surface generates fluoroaluminates and aluminate species. The process is definitivated at 400 degrees C. The fluorine in these structures is less basic than in the parent fluorides, but the oxygen becomes more basic. The catalysts were tested for the transesterification of fatty esters under different experimental conditions using conventional heating, microwave and Ultrasound irradiation. Recycling experiments showed that these catalysts are stable for a limited number of cycles. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Conventional water purification and disinfection generally involve potentially hazardous substances, some of which known to be carcinogenic in nature. Titanium dioxide photocatalytic processes provide an effective route to destroy hazardous organic contaminants. This present work explores the possibility of the removal of organic pollutants (phenol) by the application of TiO2 based photocatalysts. The production of series of metal ions doped or undoped TiO2 were carried out via a sol–gel method and a wet impregnation method. Undoped TiO2 and Cu doped TiO2 showed considerable phenol degradation. The efficiency of photocatalytic reaction largely depends on the photocatalysts and the methods of preparation the photocatalysts. The doping of Fe, Mn, and humic acid at 1.0 M% via sol–gel methods were detrimental for phenol degradation. The inhibitory effect of initial phenol concentration on initial phenol degradation rate reveals that photocatalytic decomposition of phenol follows pseudo zero order reaction kinetics. A concentration of > 1 g/L TiO2 and Cu doped TiO2 is required for the effective degradation of 50 mg/L of phenol at neutral pH. The rise in OH- at a higher pH values provides more hydroxyl radicals which are beneficial of phenol degradation. However, the competition among phenoxide ion, Cl- and OH- for the limited number of reactive sites on TiO2 will be a negative influence in the generation of hydroxyl radical. The dependence of phenol degradation rate on the light intensity was observed, which also implies that direct sunlight can be a substitute for the UV lamps and that photocatalytic treatment of organic pollutants using this technique shows some promise.
Resumo:
Electrodeposition of metals onto conductive supports such as graphite potentially provides a lower-waste method to form heterogeneous catalysts than the standard methods such as wet impregnation. Copper electrodeposition onto pressed graphite disc electrodes was investigated from aqueous CuSO4-ethylenediamine solutions by chronoamperometry with scanning electron microscopy used to ascertain the particle sizes obtained by this method. The particle size was studied as a function of pH, CuSO4-ethylenediamine concentration, and electrodeposition time. It was observed that decreasing the pH, copper-ethylenediamine concentration and time each decreased the size of the copper particles observed, with the smallest obtained being around 5-20 nm. Furthermore, electroless aerobic oxidation of copper metal in the presence of ethylenediamine was successfully coupled with the electrodeposition in the same vessel. In this way, deposition was achieved sequentially on up to twenty different graphite discs using the same ethylenediamine solution, demonstrating the recyclability of the ligand. The materials thus prepared were shown to be catalytically active for the mineralisation of phenol by hydrogen peroxide. Overall, the results provide a proof-of-principle that by making use of aerobic oxidation coupled with electrochemical deposition, elemental base metals can be used directly as starting materials to form heterogeneous catalysts without the need to use metal salts as catalyst precursors.
Resumo:
Low-temperature (<200 degrees C) hydrocarbon selective catalytic reduction of NOx has been achieved for the first time in the absence of hydrogen using a solvent-free mechanochemically prepared Ag/Al2O3 catalyst. Catalysts prepared by this ball-milling method show a remarkable increase in activity for the reduction of nitrogen oxides with octane by lowering the light-off temperature by up to 150 degrees C compared with a state-of-the-art 2 wt %Ag/Al2O3 catalyst prepared by wet impregnation. The best catalyst prepared from silver oxide showed 50% NOx conversion at 240 degrees C and 99%, at 302 degrees C. The increased activity is not due to an increased surface area of the support, but may be associated with a change in.the'defeet structure of the alumina surface, leading to the formation of the small silver clusters necessary for the activation of the octane without leading to total combustion. On the other hand, since one possible role of hydrogen is to remove inhibiting species from the silver, we cannot exclude some change in the chemical properties of the silver as a result of the ball-milling treatment.
Resumo:
Mechanochemical preparation of Ag/Al2O3 catalysts used for the selective catalytic reduction of NOx using hydrocarbons has been shown to substantially increase the activity of the catalyst in comparison with Ag/Al2O3 prepared by wet impregnation. The effect of using different ball-milling experimental parameters on both the structure of the material as well as the catalyst activity has been investigated and the optimum conditions established. A phase transition from γ- to α-alumina was observed milling at high speeds which was found to result in lower catalyst activities. At lower milling speeds both fracturing and agglomeration of the alumina support can be observed depending on the grinding time. However, due to ball-milling, a general enhancement in the NOx reduction activity was observed for all catalysts compared with the conventionally prepared catalysts irrespective of the reductant used. Transient DRIFTS-MS experiments were performed to investigate the effect of H2 in the absence and presence of water on the SCR reaction over catalysts prepared by both ball milling and wet impregnation. In-situ DRIFTS-MS analysis revealed significant differences in both gas phase and surface species. Most notably, isocyanate species were formed significantly more quickly and at higher surface concentration in the case of the mechanochemically prepared catalyst.
Resumo:
The selective catalytic reduction (SCR) of NOx in the presence of different reducing agents over Ag/Al2O3 prepared by wet impregnation was investigated by probing catalyst activity and using NMR relaxation time analysis to probe the strength of surface interaction of the various reducing agent species and water. The results reveal that the strength of surface interaction of the reducing agent relative to water, the latter present in engine exhausts as a fuel combustion product and, in addition, produced during the SCR reaction, plays an important role in determining catalyst performance. Reducing agents with weak strength of interaction with the catalyst surface, such as hydrocarbons, show poorer catalytic performance than reducing agents with a higher strength of interaction, such as alcohols. This is attributed to the greater ability of oxygenated species to compete with water in terms of surface interaction with the catalyst surface, hence reducing the inhibiting effect of water molecules blocking catalyst sites. The results support the observations of earlier work in that the light off-temperature and maximum NOx conversion and temperature at which that occurs are sensitive to the reducing agent present during reaction, and the proposal that improved catalyst performance is caused by increased adsorption strength of the reducing agent, relative to water, at the catalyst surface. Importantly, the NMR relaxation time analysis approach to characterising the strength of adsorption more readily describes the trends in catalytic behaviour than does a straightforward consideration of the polarity (i.e., relative permittivity) of the reducing agents studied here. In summary, this paper describes a simple approach to characterising the interaction energy of water and reducing agent so as to aid the selection of reducing agent and catalyst to be used in SCR conversions.
Resumo:
This communication investigates the potential for fabrication of micromachined silicon sub-millimeter wave periodic arrays of freestanding slot frequency selective surfaces (FSS) using wet etch KOH technology. The vehicle for this is an FSS for generating circularly polarized signals from an incident linearly polarized signal at normal incidence to the structure. Principal issues and fabrication processes involved from the initial design of the core FSS structures to be made and tested through to their final testing are addressed. Measured and simulated results for crossed and ring slot element shapes in single and double layer polarization convertor structures are presented for sub-mm wave operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one layer perforated screen design and that the rate of change is lower than the double layer structures. An insertion loss of 1.1 dB can be achieved for the split circular ring double layer periodic array. These results are shown to be compatible with the more specialized fabrication equipment dry reactive ion etching approach previously used for the construction of this type of structure. © 2011 IEEE.
Resumo:
Generally, the solid and liquid fractions (digestate) from Anaerobic Digestion (AD) energy production are considered as waste. This has a negative impact on the sustainability of AD processes because of the financial outlay required to treat digestate before being discharged into municipal water treatment plants or natural water bodies. The main aim of this research was to investigate feasibility of producing an organic fertiliser using anaerobic digestate and limestone powders as the raw materials employing a high shear granulation process. Two-level factorial experimental design was used to determine the influence of granulation process variables on, the strength, resistance to attrition and yield of the granules. It was concluded from the study that it is technically feasible to produce organic fertiliser granules of acceptable strength and product yield. Increasing the liquid-to-solid ratio during granulation leads to increased granule strength and better product yield. Although the strength of the granules produced was lower than typical strength of commercial synthetic fertiliser granules (about 5 to 7. MPa), this could be improved by mixing the digestate with a polymeric binder or coating the particles post granulation. © 2012 Elsevier B.V.
Resumo:
Design of small mixer impellers is not tailored for granulation as they are designed for a wide range of processes. The Kenwood KM070 was employed as a standard apparatus to undertake this investigation. Five different impeller designs were used, possessing different shapes and surface areas. The aim of this research was to evaluate the performances of these impellers to provide
guidance on the selection and design for the purposes of granulation. Lactose granules were produced using wet granulation with water as the binder.
The efficacy of respective granulates was measured by adding an optically
sensitive tracer.This was used to determine powder concentrations
within various regions of the granulator. It was found that impeller design influenced the homogeneity of the granules; and therefore can affect final product performance.
Resumo:
This is a report on the 4th international conference in 'Quantitative Biology and Bioinformatics in Modern Medicine' held in Belfast (UK), 19-20 September 2013. The aim of the conference was to bring together leading experts from a variety of different areas that are key for Systems Medicine to exchange novel findings and promote interdisciplinary ideas and collaborations.
Resumo:
Small mixer impeller design is not tailored for granulation because impellers are intended for a wide range of processes. The aim of this research was to evaluate the performances of several impellers to provide guidance on the selection and design for the purposes of granulation. Lactose granules were produced using wet granulation with water as a binder. A Kenwood KM070 mixer was used as a standard apparatus and five impeller designs with different shapes and surface areas were used. The efficacy of granulate formation was measured by adding an optically sensitive tracer to determine variations in active ingredient content across random samples of granules from the same size classes. It was found that impeller design influenced the homogeneity of the granules and therefore can affect final product performance. The variation in active ingredient content across granules of differing size was also investigated. The results show that small granules were more potent than larger granules.
Resumo:
The solubility of carbon dioxide in five tetraalkylphosphonium superbase ionic liquids, namely the trihexyltetradecylphoshonium phenoxide, trihexyltetradecylphoshonium benzotriazolide, trihexyltetradecylphoshonium benzimidazolide, trihexyltetradecylphoshonium 1,2,3-triazolide, and trihexyltetradecylphoshonium 1,2,4-triazolide was studied experimentally under dry and wet conditions at 22 A degrees C and at atmospheric pressure, using a gravimetric saturation technique. The effects of anion structure and of the presence or absence of water in the solution on the carbon dioxide solubility were then deduced from the data. H-1 and C-13-NMR spectroscopy and ab initio calculations were also conducted to probe the interactions in these solutions, as carbon dioxide and water can compete in the ionic liquid structure during the absorption process. Additionally, the viscosity of selected superbase ionic liquids was measured under dry and wet conditions, in the presence or absence of CO2, to evaluate their practical application in carbon dioxide capture processes. Finally, the recyclability of the trihexyltetradecylphoshonium 1,2,4-triazolide under dry and wet conditions was determined to probe the ability of selected solvents to solubilize chemically a high concentration of carbon dioxide and then release it in a low energy demand process.