11 resultados para trajectory control

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the trajectory control of a 2DOF mini electro-hydraulic excavator by using fuzzy self tuning with neural network algorithm. First, the mathematical model is derived for the 2DOF mini electro-hydraulic excavator. The fuzzy PID and fuzzy self tuning with neural network are designed for circle trajectory following. Its two links are driven by an electric motor controlled pump system. The experimental results demonstrated that the proposed controllers have better control performance than the conventional controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling and control of nonlinear dynamical systems is a challenging problem since the dynamics of such systems change over their parameter space. Conventional methodologies for designing nonlinear control laws, such as gain scheduling, are effective because the designer partitions the overall complex control into a number of simpler sub-tasks. This paper describes a new genetic algorithm based method for the design of a modular neural network (MNN) control architecture that learns such partitions of an overall complex control task. Here a chromosome represents both the structure and parameters of an individual neural network in the MNN controller and a hierarchical fuzzy approach is used to select the chromosomes required to accomplish a given control task. This new strategy is applied to the end-point tracking of a single-link flexible manipulator modelled from experimental data. Results show that the MNN controller is simple to design and produces superior performance compared to a single neural network (SNN) controller which is theoretically capable of achieving the desired trajectory. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary purpose of this experiment was to determine if left hand reaction time advantages in manual aiming result from a right hemisphere attentional advantage or an early right hemisphere role in movement preparation. Right-handed participants were required to either make rapid goal-directed movements to small targets or simply lift their hand upon target illumination. The amount of advance information about the target for a particular trial was manipulated by precuing a subset of potential targets prior to the reaction time interval. When participants were required to make aiming movements to targets in left space, the left hand enjoyed a reaction advantage that was not present for aiming in right space: or simple finger lifts. This advantage was independent of the amount or type of advance information provided by the precue. This finding supports the movement planning hypothesis. With respect to movement execution, participants completed their aiming movements more quickly when aiming with their right hand, particularly in right space. This right hand advantage in right space was due to the time required to decelerate the movement and to make feedback-based adjustments late in the movement trajectory. (C) 2001 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constant bearing angle (CBA) strategy is a prospective strategy that permits the interception of moving objects. The purpose of the present study is to test this strategy. Participants were asked to walk through a virtual environment and to change, if necessary, their walking speed so as to intercept approaching targets. The targets followed either a rectilinear or a curvilinear trajectory and target size was manipulated both within trials (target size was gradually changed during the trial in order to bias expansion) and between trials (targets of different sizes were used). The curvature manipulation had a large effect on the kinematics of walking, which is in agreement with the CBA strategy. The target size manipulations also affected the kinematics of walking. Although these effects of target size are not predicted by the CBA strategy, quantitative comparisons of observed kinematics and the kinematics predicted by the CBA strategy showed good fits. Furthermore, predictions based on the CBA strategy were deemed superior to predictions based on a required velocity (V-REQ) model. The role of target size and expansion in the prospective control of walking is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Wing-Kristofferson (WK) model of movement timing emphasises the separation of central timer and motor processes. Several studies of repetitive timing have shown that increase in variability at longer intervals is attributable to timer processes; however, relatively little is known about the way motor aspects of timing are affected by task movement constraints. In the present study, we examined timing variability in finger tapping with differences in interval to assess central timer effects, and with differences in movement amplitude to assess motor implementation effects. Then, we investigated whether effects of motor timing observed at the point of response (flexion offset/tap) are also evident in extension, which would suggest that both phases are subject to timing control. Eleven participants performed bimanual simultaneous tapping, at two target intervals (400, 600 ms) with the index finger of each hand performing movements of equal (3 or 6 cm) or unequal amplitude (left hand 3, right hand 6 cm and vice versa). As expected, timer variability increased with the mean interval but showed only small, non-systematic effects with changes in movement amplitude. Motor implementation variability was greater in unequal amplitude conditions. The same pattern of motor variability was observed both at flexion and extension phases of movement. These results suggest that intervals are generated by a central timer, triggering a series of events at the motor output level including flexion and the following extension, which are explicitly represented in the timing system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manual interception, such as catching or hitting an approaching ball, requires the hand to contact a moving object at the right location and at the right time. Many studies have examined the neural mechanisms underlying the spatial aspects of goal-directed reaching, but the neural basis of the spatial and temporal aspects of manual interception are largely unknown. Here, we used repetitive transcranial magnetic stimulation (rTMS) to investigate the role of the human middle temporal visual motion area (MT+/V5) and superior parieto-occipital cortex (SPOC) in the spatial and temporal control of manual interception. Participants were required to reach-to-intercept a downward moving visual target that followed an unpredictably curved trajectory, presented on a screen in the vertical plane. We found that rTMS to MT+/V5 influenced interceptive timing and positioning, whereas rTMS to SPOC only tended to increase the spatial variance in reach end points for selected target trajectories. These findings are consistent with theories arguing that distinct neural mechanisms contribute to spatial, temporal, and spatiotemporal control of manual interception.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigated the differences between multileaf collimator (MLC) positioning accuracy determined using either log files or electronic portal imaging devices (EPID) and then assessed the possibility of reducing patient specific quality control (QC) via phantom-less methodologies. In-house software was developed, and validated, to track MLC positional accuracy with the rotational and static gantry picket fence tests using an integrated electronic portal image. This software was used to monitor MLC daily performance over a 1 year period for two Varian TrueBeam linear accelerators, with the results directly compared with MLC positions determined using leaf trajectory log files. This software was validated by introducing known shifts and collimator errors. Skewness of the MLCs was found to be 0.03 ± 0.06° (mean ±1 standard deviation (SD)) and was dependent on whether the collimator was rotated manually or automatically. Trajectory log files, analysed using in-house software, showed average MLC positioning errors with a magnitude of 0.004 ± 0.003 mm (rotational) and 0.004 ± 0.011 mm (static) across two TrueBeam units over 1 year (mean ±1 SD). These ranges, as indicated by the SD, were lower than the related average MLC positioning errors of 0.000 ± 0.025 mm (rotational) and 0.000 ± 0.039 mm (static) that were obtained using the in-house EPID based software. The range of EPID measured MLC positional errors was larger due to the inherent uncertainties of the procedure. Over the duration of the study, multiple MLC positional errors were detected using the EPID based software but these same errors were not detected using the trajectory log files. This work shows the importance of increasing linac specific QC when phantom-less methodologies, such as the use of log files, are used to reduce patient specific QC. Tolerances of 0.25 mm have been created for the MLC positional errors using the EPID-based automated picket fence test. The software allows diagnosis of any specific leaf that needs repair and gives an indication as to the course of action that is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article proposes a closed-loop control scheme based on joint-angle feedback for cable-driven parallel manipulators (CDPMs), which is able to overcome various difficulties resulting from the flexible nature of the driven cables to achieve higher control accuracy. By introducing a unique structure design that accommodates built-in encoders in passive joints, the seven degrees of freedom (7-DOF) CDPM can obtain joint angle values without external sensing devices, and it is used for feedback control together with a proper closed-loop control algorithm. The control algorithm has been derived from the time differential of the kinematic formulation, which relates the joint angular velocities to the time derivative of cable lengths. In addition, the Lyapunov stability theory and Monte Carlo method have been used to mathematically verify the self-feedback control law that has tolerance for parameter errors. With the aid of co-simulation technique, the self-feedback closed-loop control is applied on a 7-DOF CDPM and it shows higher motion accuracy than the one with an open-loop control. The trajectory tracking experiment on the motion control of the 7-DOF CDPM demonstrated a good performance of the self-feedback control method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new dual-gas multi-jet HHG source which can be perfectly controlled via phasematching of the long and short trajectory contributions and is applicable for high average power driver laser systems. © 2011 Optical Society of America.