46 resultados para swd: Time-of-Flight Kamera
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A new approach to the search for residues of unknown growth promoting agents such as anabolic steroids and -agonists in feed is presented. Following primary extraction and clean-up, samples are separated using gradient liquid chromatography (LC). The effluent is split towards two identical 96-well fraction collectors and an optional electrospray quadrupole time-of-flight mass spectrometry (QTOFMS) system for accurate mass measurement. One 96-well plate is used for a bioassay (enzyme-immuno assay, receptor assay) and will detect the bioactivity and position of the relevant peak in the chromatogram. The positive well in the second 96-well plate is used for identification by LC/QTOFMS/MS. The value of this LC/bioassay/QTOFMS/MS methodology is highlighted by the finding and structure elucidation of a new -agonist in a feed extract.
Resumo:
The potential for coupling technologies to deliver new, improved forms of bioanalysis is still in its infancy. We review a number of examples in which coupling has been successful, with special emphasis on combining surface-plasmon-resonance biosensors with mass spectrometry. We give an overview of current progress towards combining biosensor-based bioanalysis with chemical analysis for confirmation of paralytic shellfish poisons that are marine toxins. This comprehensive approach could be an alternative to the official methods currently used (e.g., animal testing and high-performance liquid chromatography with fluorescence detection) and could serve as a model for many more such applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A Time of flight (ToF) mass spectrometer suitable in terms of sensitivity, detector response and time resolution, for application in fast transient Temporal Analysis of Products (TAP) kinetic catalyst characterization is reported. Technical difficulties associated with such application as well as the solutions implemented in terms of adaptations of the ToF apparatus are discussed. The performance of the ToF was validated and the full linearity of the specific detector over the full dynamic range was explored in order to ensure its applicability for the TAP application. The reported TAP-ToF setup is the first system that achieves the high level of sensitivity allowing monitoring of the full 0-200 AMU range simultaneously with sub-millisecond time resolution. In this new setup, the high sensitivity allows the use of low intensity pulses ensuring that transport through the reactor occurs in the Knudsen diffusion regime and that the data can, therefore, be fully analysed using the reported theoretical TAP models and data processing.
Resumo:
Rai, D., Koidis, A., Rawson, A., McLouglin, P., Brunton, N. (2010). Characterisation of polyacetylenes in carrot extracts using electrospray ionisation quadrupole time of flight mass spectrometry. Delegate CD-Rom PS2.8, EFFoST Annual Meeting, Dublin, Ireland, 10 -12/11/2010 (Poster).
Resumo:
Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.
Resumo:
Studies have been carried out to recognize individuals from a frontal view using their gait patterns. In previous work, gait sequences were captured using either single or stereo RGB camera systems or the Kinect 1.0 camera system. In this research, we used a new frontal view gait recognition method using a laser based Time of Flight (ToF) camera. In addition to the new gait data set, other contributions include enhancement of the silhouette segmentation, gait cycle estimation and gait image representations. We propose four new gait image representations namely Gait Depth Energy Image (GDE), Partial GDE (PGDE), Discrete Cosine Transform GDE (DGDE) and Partial DGDE (PDGDE). The experimental results show that all the proposed gait image representations produce better accuracy than the previous methods. In addition, we have also developed Fusion GDEs (FGDEs) which achieve better overall accuracy and outperform the previous methods.
Resumo:
Abstract Short intense pulses of fast neutrons were produced in a two stage laser-driven experiment. Protons were accelerated by means of the Target Normal Sheath Acceleration (TNSA) method using the TITAN facility at the Lawrence Livermore National Laboratory. Neutrons were obtained following interactions of the protons with a secondary lithium fluoride (LiF) target. The properties of the neutron flux were studied using BC-400 plastic scintillation detectors and the neutron time of flight (nTOF) technique. The detector setup and the experimental conditions were simulated with the Geant4 toolkit. The effects of different components of the experimental setup on the nTOF were studied. Preliminary results from a comparison between experimental and simulated nTOF distributions are presented.
Resumo:
A new spectrometer, electron radical interaction chamber, has been developed to study dissociative electron attachment to unstable molecules such as free radicals. It includes a trochoidal electron monochromator and a time-of-flight mass spectrometer. Radicals are generated with a microwave discharge at 2.45 GHz. Preliminary data are presented for radicals formed when a mixture of helium and sulphur dioxide was passed through the microwave discharge. Several new resonances are observed with the discharge on. Resonances at 0 eV (S-), 0.8, 1.2, 3.0 eV (SO-) and 3.7 eV (SO- and S2O-) are assigned to the radical S2O2 and a resonance at 1.6 eV (S-) is assigned to S2O. No new resonances have been assigned to SO, which was also generated in the microwave discharge.
Resumo:
The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO22+ dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340+/-0.010 eV. The fragmentation of energy selected CO22+ ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from similar to38.7 to similar to41 eV above the ground state of neutral CO2 has been observed in the experimental time window of similar to0.1-2.3 mus with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO++O+ formation in indirect dissociative double photoionization below the threshold for formation of CO22+. The threshold for CO++O+ formation is found to be 35.56+/-0.10 eV or lower, which is more than 2 eV lower than previous measurements. (C) 2005 American Institute of Physics.
Resumo:
The greatest relaxation time for an assembly of three- dimensional rigid rotators in an axially symmetric bistable potential is obtained exactly in terms of continued fractions as a sum of the zero frequency decay functions (averages of the Legendre polynomials) of the system. This is accomplished by studying the entire time evolution of the Green function (transition probability) by expanding the time dependent distribution as a Fourier series and proceeding to the zero frequency limit of the Laplace transform of that distribution. The procedure is entirely analogous to the calculation of the characteristic time of the probability evolution (the integral of the configuration space probability density function with respect to the position co-ordinate) for a particle undergoing translational diffusion in a potential; a concept originally used by Malakhov and Pankratov (Physica A 229 (1996) 109). This procedure allowed them to obtain exact solutions of the Kramers one-dimensional translational escape rate problem for piecewise parabolic potentials. The solution was accomplished by posing the problem in terms of the appropriate Sturm-Liouville equation which could be solved in terms of the parabolic cylinder functions. The method (as applied to rotational problems and posed in terms of recurrence relations for the decay functions, i.e., the Brinkman approach c.f. Blomberg, Physica A 86 (1977) 49, as opposed to the Sturm-Liouville one) demonstrates clearly that the greatest relaxation time unlike the integral relaxation time which is governed by a single decay function (albeit coupled to all the others in non-linear fashion via the underlying recurrence relation) is governed by a sum of decay functions. The method is easily generalized to multidimensional state spaces by matrix continued fraction methods allowing one to treat non-axially symmetric potentials, where the distribution function is governed by two state variables. (C) 2001 Elsevier Science B.V. All rights reserved.