59 resultados para sphingosine-1-phosphate (S1P)

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Sphingosine kinase 1 (SphK1) phosphorylates the membrane sphingolipid, sphingosine, to sphingosine-1-phosphate (S1P), an oncogenic mediator, which drives tumor cell growth and survival. Although SphK1 has gained increasing prominence as an oncogenic determinant in several cancers, its potential as a therapeutic target in colon cancer remains uncertain. We investigated the clinical relevance of SphK1 expression in colon cancer as well as its inhibitory effects in vitro.

METHODS: SphK1 expression in human colon tumor tissues was determined by immunohistochemistry and its clinicopathological significance was ascertained in 303 colon cancer cases. The effects of SphK1 inhibition on colon cancer cell viability and the phosphoinositide 3-kinase (PI3K)/Akt cell survival pathway were investigated using a SphK1-selective inhibitor-compound 5c (5c). The cytotoxicity of a novel combination using SphK1 inhibition with the chemotherapeutic drug, 5-fluorouracil (5-FU), was also determined.

RESULTS: High SphK1 expression correlated with advanced tumor stages (AJCC classification). Using a competing risk analysis model to take into account disease recurrence, we found that SphK1 is a significant independent predictor for mortality in colon cancer patients. In vitro, the inhibition of SphK1 induced cell death in colon cancer cell lines and attenuated the serum-dependent PI3K/Akt signaling. Inhibition of SphK1 also enhanced the sensitivity of colon cancer cells to 5-FU.

CONCLUSION: Our findings highlight the impact of SphK1 in colon cancer progression and patient survival, and provide evidence supportive of further development in combination strategies that incorporate SphK1 inhibition with current chemotherapeutic agents to improve colon cancer outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced galactose 1-phosphate uridylyltransferase (GAIT) activity is associated with the genetic disease type 1 galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GAIT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (11) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GAIT is required to assist greater understanding of the effects of disease-associated mutations. (C) 2011 IUBMB IUBMB Life, 63(9): 694-700, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two families of membrane enzymes catalyze the initiation of the synthesis of O-antigen lipopolysaccharide. The Salmonella enterica Typhimurium WbaP is a prototypic member of one of these families. We report here the purification and biochemical characterization of the WbaP C-terminal (WbaP(CT)) domain harboring one putative transmembrane helix and a large cytoplasmic tail. An N-terminal thioredoxin fusion greatly improved solubility and stability of WbaP(CT) allowing us to obtain highly purified protein. We demonstrate that WbaP(CT) is sufficient to catalyze the in vitro transfer of galactose (Gal)-1-phosphate from uridine monophosphate (UDP)-Gal to the lipid carrier undecaprenyl monophosphate (Und-P). We optimized the in vitro assay to determine steady-state kinetic parameters with the substrates UDP-Gal and Und-P. Using various purified polyisoprenyl phosphates of increasing length and variable saturation of the isoprene units, we also demonstrate that the purified enzyme functions highly efficiently with Und-P, suggesting that the WbaP(CT) domain contains all the essential motifs to catalyze the synthesis of the Und-P-P-Gal molecule that primes the biosynthesis of bacterial surface glycans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyisoprenyl-phosphate N-acetylaminosugar-1-phosphate transferases (PNPTs) constitute a family of eukaryotic and prokaryotic membrane proteins that catalyze the transfer of a sugar-1-phosphate to a phosphoisoprenyl lipid carrier. All PNPT members share a highly conserved 213-Valine-Phenylalanine-Methionine-Glycine-Aspartic acid-217 (VFMGD) motif. Previous studies using the MraY protein suggested that the aspartic acid residue in this motif, D267, is a nucleophile for a proposed double-displacement mechanism involving the cleavage of the phosphoanhydride bond of the nucleoside. Here, we demonstrate that the corresponding residue in the E. coli WecA, D217, is not directly involved in catalysis, as its replacement by asparagine results in a more active enzyme. Kinetic data indicate that the D217N replacement leads to more than twofold increase in V(max) without significant change in the K(m) for the nucleoside sugar substrate. Furthermore, no differences in the binding of the reaction intermediate analog tunicamycin were found in D217N as well as in other replacement mutants at the same position. We also found that alanine substitutions in various residues of the VFMGD motif affect to various degrees the enzymatic activity of WecA in vivo and in vitro. Together, our data suggest that the highly conserved VFMGD motif defines a common region in PNPT proteins that contributes to the active site and is likely involved in the release of the reaction product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of a series of carbohydrate-nucleotide hybrids, designed to be multisubstrate adducts mimicking myo-inositol 1-phosphate synthase first oxidative transition state, is reported. Their ability to inhibit the synthase has been assessed and results have been rationalised computationally to estimate their likely binding mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type I galactosemia is a genetic disorder that is caused by the impairment of galactose-1-phosphate uridylyltransferase (GALT; EC 2.7.7.12). Although a large number of mutations have been detected through genetic screening of the human GALT (hGALT) locus, for many it is not known how they cause their effects. The majority of these mutations are missense, with predicted substitutions scattered throughout the enzyme structure and thus causing impairment by other means rather than direct alterations to the active site. To clarify the fundamental, molecular basis of hGALT impairment we studied five disease-associated variants p.D28Y, p.L74P, p.F171S, p.F194L and p.R333G using both a yeast model and purified, recombinant proteins. In a yeast expression system there was a correlation between lysate activity and the ability to rescue growth in the presence of galactose, except for p.R333G. Kinetic analysis of the purified proteins quantified each variant's level of enzymatic impairment and demonstrated that this was largely due to altered substrate binding. Increased surface hydrophobicity, altered thermal stability and changes in proteolytic sensitivity were also detected. Our results demonstrate that hGALT requires a level of flexibility to function optimally and that altered folding is the underlying reason of impairment in all the variants tested here. This indicates that misfolding is a common, molecular basis of hGALT deficiency and suggests the potential of pharmacological chaperones and proteostasis regulators as novel therapeutic approaches for type I galactosemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro assays are invaluable for the biochemical characterization of UDP-sugar:undecaprenyl-phosphate sugar-1-phosphate transferases. These assays typically involve the use of a radiolabeled substrate and subsequent extraction of the product, which resides in a lipid environment. Here, we describe the preparation of bacterial membranes containing these enzymes, a standard in vitro transferase assay with solvents containing chloroform and methanol, and two methods to measure product formation: scintillation counting and thin layer chromatography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

WcaJ is an Escherichia coli membrane enzyme catalysing the biosynthesis of undecaprenyl-diphosphate-glucose, the first step in the assembly of colanic acid exopolysaccharide. WcaJ belongs to a large family of polyisoprenyl-phosphate hexose-1-phosphate transferases (PHPTs) sharing a similar predicted topology consisting of an N-terminal domain containing four transmembrane helices (TMHs), a large central periplasmic loop, and a C-terminal domain containing the fifth TMH (TMH-V) and a cytosolic tail. However, the topology of PHPTs has not been experimentally validated. Here, we investigated the topology of WcaJ using a combination of LacZ/PhoA reporter fusions and sulfhydryl
labelling by PEGylation of novel cysteine residues introduced into a cysteine-less WcaJ. The results showed that the large central loop and the C-terminal tail both reside in the cytoplasm and are separated by TMH-V, which does not fully span the membrane, likely forming a "hairpin" structure. Modelling of TMH-V revealed that a highly conserved proline might contribute to a helix-break-helix structure in all PHPT members. Bioinformatic analyses show that all of these features are conserved in PHPT homologues from
Gram-negative and Gram-positive bacteria. Our data demonstrate a novel topological configuration for PHPTs, which is proposed as a signature for all members of this enzyme family

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recycling of the lipid carrier undecaprenyl-phosphate (Und-P) requires the dephosphorylation of Und-PP, a reaction proposed to occur at the external or periplasmic side of the bacterial cell membrane. In this issue of Molecular Microbiology, experiments based on the analysis of lipopolysaccharide modifications in Escherichia coli demonstrate that the phosphorylation of lipid A at position 1 is catalysed by the membrane enzyme LpxT (formerly YeiU). This enzyme specifically transfers the distal phosphate group from Und-PP to lipid A 1-phosphate to produce lipid A 1-diphosphate. Furthermore, this reaction requires a functionally intact MsbA protein, which catalyses the transfer of lipid A across the membrane, confirming that the LpxT-mediated lipid A modification occurs on the periplasmic side of the membrane. These observations provide a novel and unexpected link between periplasmic lipid A modifications and the Und-PP recycling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical or transferase-deficient galactosaemia is an inherited metabolic disorder caused by mutation in the human Galactose-1-phosphate uridyl transferase (GALT) gene. Of some 170 causative mutations reported, fewer than 10% are observed in more than one geographic region or ethnic group. To better understand the population history of the common GALT mutations, we have established a haplotyping system for the GALT locus incorporating eight single nucleotide polymorphisms and three short tandem repeat markers. We analysed haplotypes associated with the three most frequent GALT gene mutations, Q188R, K285N and Duarte-2 (D2), and estimated their age. Haplotype diversity, in conjunction with measures of genetic diversity and of linkage disequilibrium, indicated that Q188R and K285N are European mutations. The Q188R mutation arose in central Europe within the last 20 000 years, with its observed east-west cline of increasing relative allele frequency possibly being due to population expansion during the re-colonization of Europe by Homo sapiens in the Mesolithic age. K285N was found to be a younger mutation that originated in Eastern Europe and is probably more geographically restricted as it arose after all major European population expansions. The D2 variant was found to be an ancient mutation that originated before the expansion of Homo sapiens out of Africa. Heredity (2010) 104, 148-154; doi:10.1038/hdy.2009.84; published online 29 July 2009