33 resultados para soil pollution

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the soil arthropod communities of urban and suburban holm oak (Quercus ilex L.) stands in a small (Siena) and a large Italian city (Naples) and tested whether the abundance and diversity of higher arthropod taxa are affected by the biotic and abiotic conditions of urban forest soils, including pollution. Acarina and Collembola were the dominant taxa in both cities. In Siena the total number of arthropod individuals collected in the samples was over 1/3 greater than in Naples, but all diversity indices scored higher in Naples than in Siena, probably in response to the higher heterogeneity of microclimatic and pedological conditions found in Naples study area. Oribatids resulted twice more abundant in Siena and so were the total mites with respect to Collembola. While “taxonomic richness” per site increased with distance from road traffic, entropy and evenness indices scored higher at the two ends of the impact gradient in both cities. The overall variation in basic pedological and microbiological soil parameters positively correlated with the total abundance of arthropods, and negatively correlated with their taxonomic richness. At the resolution employed, no significant relation emerged between anthropogenic factors, such as traffic load and soil pollution, and the arthropod fauna density and variety. These results are consistent with conclusions drawn from a previous study on the enchytraeid fauna examined at species level, which is remarkable considering the different taxonomic resolutions of the two studies. CCA results suggest that the higher abundance of Oribatid mites, Protura and Thysanura and the lower abundance of Diplopoda and Symphyla in Siena could depend on a higher fungi/bacteria ratio. This observation can be interpreted in terms of differences in fungi and bacteria between the two cities: Siena is shifted towards the fungal decomposition channel, which supports taxa such as oribatid mites, while Naples is shifted towards the bacterial channel, which supports chiefly detritivorous groups, such as diplopods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concentrations and isotopic compositions of NO-3 from the Oldman River (OMR) and some of its tributaries (Alberta, Canada) have been determined on a monthly basis since December 2000 to assess temporal and spatial variations of riverine NO-3 sources within the OMR basin. For the OMR sites, NO-3 -N concentrations reached up to 0.34 mg L-1, d15N-NO-3 values varied between –0.3 and +13.8‰, and d18O-NO-3 values ranged from –10.0 to +5.7‰. For the tributary sites, NO-3 -N concentrations were as high as 8.81 mg L-1, d15N-NO-3 values varied between –2.5 and +23.4‰, and d18O-NO-3 values ranged from –15.2 to +3.4‰. Tributaries in the western, relatively pristine forested part of the watershed add predominantly NO-3 to the OMR with d15N-NO-3 indicative of soil nitrification. In contrast, tributaries in the eastern agriculturally-urban-industrially-used part of the basin contribute NO-3 with d15N-NO-3 values of about +16‰ indicative of manure and/or sewage derived NO-3. This difference in d15N-NO-3 values of tributaries was found to be independent of the season, but rather indicates a spatial change in the NO-3 source, which correlates with land use changes within the OMR basin. As a consequence of tributary influx, d15N-NO-3 values in the Oldman River increased from +6‰ in the downstream direction (W to E), although [NO-3 -N] increased only moderately (generally

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microbiologically contaminated water severely impacts public health in low-income countries, where treated water supplies are often inaccessible to much of the population. Groundwater represents a water source that commonly has better microbiological quality than surface water. A 2-month intensive flow and quality monitoring programme of a spring in a densely settled, unsewered parish of Kampala, Uganda, revealed the persistent presence of high chloride and nitrate concentrations that reflect intense loading of sewage in the spring’s catchment. Conversely, thermotolerant coliform bacteria counts in spring water samples remained very low outside of periods of intense rainfall. Laboratory investigations of mechanisms responsible for this behavior, achieved by injecting a pulse of H40/1 bacteriophage tracer into a column packed with locally derived granular laterite, resulted in near-total tracer adsorption. X-ray diffraction (XRD) analysis showed the laterite to consist predominantly of quartz and kaolinite, with minor amounts (<5%) of haematite. Batch studies comparing laterite adsorption capacity with a soil having comparable mineralogy, but with amorphous iron oxide rather than haematite, showed the laterite to have a significantly greater capacity to adsorb bacteriophage. Batch study results using pure haematite confirmed that its occurrence in laterite contributes substantially to micro-organism attenuation observed and serves to protect underlying groundwater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In April 1998, a holding lagoon containing pyrite ore processing waste rich in arsenic, failed and released 5-6 million m(3) of highly polluting sludge and acidic water. Over 2700 ha of the internationally important Doñana National and Natural Parks were contaminated. The area of Natural Park to sustain the greatest impact was known as the Entremuros. This paper presents 0-5 cm soil monitoring data from the Entremuros, from sampling campaigns 6 and 18 months after the disaster; as well as macrophyte root, rhizome and stem data from samples taken 18 months after the spill. Results show a clear, decreasing, north-south arsenic soil pollution trend, both 6 and 18 months after the spill, and suggest a small reduction in total soil arsenic levels occurred over time; although a significant increase in extractable arsenic is also noted. The two macrophytes (Typha dominguensis and Scirpus maritimus) studied herein are not accumulating arsenic in stem parts, however, accumulation of arsenic on iron plaque on the roots of these plants may be occurring. Further work is recommended in order to determine the ecotoxicological significance of this process in relation to the avian food-chains of Doñana, and elsewhere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we have investigated the uptake and distribution of arsenic (As) and phosphate (Pi) in roots, shoots, and grain of wheat grown in an uncontaminated soil irrigated with solutions containing As at three different concentrations (0.5, 1 and 2 mg l-1) and in the presence or in the absence of P fertilization. Arsenic in irrigation water reduced plants growth and decreased grain yield. When Pi was not added (P-), plants were more greatly impacted compared to the plus Pi (P+) treatments. The differences in mean biomass between P- and P+ treatments at the higher As concentrations demonstrated the role of Pi in preventing As toxicity and growth inhibition. Arsenic concentrations in root, shoot and grain increased with increasing As concentration in irrigation water. It appears that P fertilization minimizes the translocation of As to the shoots and grain whilst enhancing P status of plant. The observation that P fertilization minimises the translocation of arsenic to the shoots and grain is interesting and may be useful for certain regions of the world that has high levels of As in groundwater or soils. © 2008 Springer Science+Business Media B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accelerated soil erosion is an aspect of dryland degradation that is affected by repeated intense drought events and land management activities such as commercial livestock grazing. A soil stability index (SSI) that detects the erosion status and susceptibility of a landscape at the pixel level, i.e., stable, erosional, or depositional pixels, was derived from the spectral properties of an archived time series (from 1972 to 1997) of Landsat satellite data of a commercial ranch in northeastern Utah. The SSI was retrospectively validated with contemporary field measures of soil organic matter and erosion status that was surveyed by US federal land management agencies. Catastrophe theory provided the conceptual framework for retrospective assessment of the impact of commercial grazing and soil water availability on the SSI. The overall SSI trend was from an eroding landscape in the early drier 1970s towards stable conditions in the wetter mid-1980s and late 1990s. The landscape catastrophically shifted towards an extreme eroding state that was coincident with the “The Great North American Drought of 1988”. Periods of landscape stability and trajectories toward stability were coincident with extremely wet El Niño events. Commercial grazing had less correlation with soil stability than drought conditions. However, the landscape became more susceptible to erosion events under multiple droughts and grazing. Land managers now have nearly a year warning of El Niño and La Niña events and can adjust their management decisions according to predicted landscape erosion conditions.