4 resultados para socially biased learning
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A new self-learning algorithm for accelerated dynamics, reconnaissance metadynamics, is proposed that is able to work with a very large number of collective coordinates. Acceleration of the dynamics is achieved by constructing a bias potential in terms of a patchwork of one-dimensional, locally valid collective coordinates. These collective coordinates are obtained from trajectory analyses so that they adapt to any new features encountered during the simulation. We show how this methodology can be used to enhance sampling in real chemical systems citing examples both from the physics of clusters and from the biological sciences.
Resumo:
Authoritarianism, comprising conventionalism, authoritarian submission, and authoritarian aggression, is an important factor underlying prejudice and social discrimination and therefore is typically perceived as socially problematic. In contrast, our work examines adaptive features of authoritarianism. Evolutionary game theoretical considerations (e.g., biased social learning) point to authoritarian psychological processes that establish and foster group life (e.g., high levels of ingroup cooperation). First, the evolution of social learning (particularly conformist and prestige biases) leads to the establishment of local and distinct cultural groups (conventionalism). Second, local cultural rules solve coordination dilemmas by transforming these rules into normative standards against which others are evaluated (authoritarian submission). Third, the common rules within a particular culture or group are reinforced by a tendency to reward norm compliance and punish norm deviations (authoritarian aggression). Implications regarding the deduction of novel research questions as well as dealing with authoritarianism as a social problem are discussed.
Resumo:
The problem of learning from imbalanced data is of critical importance in a large number of application domains and can be a bottleneck in the performance of various conventional learning methods that assume the data distribution to be balanced. The class imbalance problem corresponds to dealing with the situation where one class massively outnumbers the other. The imbalance between majority and minority would lead machine learning to be biased and produce unreliable outcomes if the imbalanced data is used directly. There has been increasing interest in this research area and a number of algorithms have been developed. However, independent evaluation of the algorithms is limited. This paper aims at evaluating the performance of five representative data sampling methods namely SMOTE, ADASYN, BorderlineSMOTE, SMOTETomek and RUSBoost that deal with class imbalance problems. A comparative study is conducted and the performance of each method is critically analysed in terms of assessment metrics. © 2013 Springer-Verlag.
Resumo:
Although visual surveillance has emerged as an effective technolody for public security, privacy has become an issue of great concern in the transmission and distribution of surveillance videos. For example, personal facial images should not be browsed without permission. To cope with this issue, face image scrambling has emerged as a simple solution for privacyrelated applications. Consequently, online facial biometric verification needs to be carried out in the scrambled domain thus bringing a new challenge to face classification. In this paper, we investigate face verification issues in the scrambled domain and propose a novel scheme to handle this challenge. In our proposed method, to make feature extraction from scrambled face images robust, a biased random subspace sampling scheme is applied to construct fuzzy decision trees from randomly selected features, and fuzzy forest decision using fuzzy memberships is then obtained from combining all fuzzy tree decisions. In our experiment, we first estimated the optimal parameters for the construction of the random forest, and then applied the optimized model to the benchmark tests using three publically available face datasets. The experimental results validated that our proposed scheme can robustly cope with the challenging tests in the scrambled domain, and achieved an improved accuracy over all tests, making our method a promising candidate for the emerging privacy-related facial biometric applications.