76 resultados para shale oil
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The spouted bed was widely used due to its good mixing of particles and effective phase transferability between the gas and solid phase. In this paper, the transportation process of particles in a 3D spouted bed was studied using the Computational Particle Fluid Dynamics (CPFD) numerical method. Experiments were conducted to verify the validity of the simulation results. Distributions of the pressure, velocities and particle concentration of transportation devices were investigated. The motion state and characteristics of multiphase flows in the transportation device were demonstrated under various operating conditions. The results showed that a good consistency was obtained between the simulated results and the experimental results. The motion characteristics of the gas-solid two-phase flow in the device was effectively predicted, which could assist the optimal operating condition estimation for the spouted transportation process.
Resumo:
The most common mode of deactivation suffered by catalysts fitted to two-stroke engines has traditionally been thermal degradation, or even meltdown, of the washcoat and substrate. The high temperatures experienced by these catalysts are caused by excessively high concentrations of HC and CO in the exhaust gas which are, in turn, caused by a rich AFR and the loss of neat fuel to the exhaust during the scavenging period. The effects of catalyst poisoning due to additives in the oil is often regarded as a secondary, or even negligible, deactivating mechanism in two-stroke catalysts and has therefore received little attention. However, with the introduction of direct in-cylinder fuel injection to some larger versions of this engine, the quantities of HC escaping to the exhaust can be reduced to levels similar to those found on four-stroke gasoline engines. Under these conditions, the effects of poisoning are much more significant to catalyst durability, particularly for crankcase scavenged derivatives which allow considerable quantities of oil to escape into the exhaust in a neat, or partially burned form. In this paper the effects of oil-derived sulphur on catalyst performance are examined using specialised test apparatus. The oil used throughout the study was formulated specifically for a two-stroke engine fitted with direct in-cylinder fuel injection. The sulphur content of this oil was 0.21% by mass and particular attention was paid to the role of this element in the resulting deactivation. The catalyst was also designed for two-stroke applications and contained a high palladium loading of 300g/ft3 (28g/l) to prolong the life of the catalyst. It was found that the sulphur caused permanent deactivation of the CO reaction and increased the light-off temperature by around 40oC after oiling for 60 hours. This deactivation was progressive and led to a reduction in surface area of the washcoat, particularly in the micropores of around 5Å diameter. By using a validated catalyst model the change in surface area of the precious metal was estimated. It was found that the simulated palladium surface area had to be reduced by a factor of around 7.5 to produce the light-off temperature of the deactivated catalyst. Conversely, the light-off temperature of the C3H6 reaction was barely affected by the deactivation.
Resumo:
The objective of this study was to determine how structure, stratigraphy, and weathering influence fate and transport of contaminants (particularly U) in the ground water and geologic material at the Department of Energy (DOE) Environmental Remediation Sciences Department (ERSD) Field Research Center (FRC). Several cores were collected near four former unlined adjoining waste disposal ponds. The cores were collected, described, analyzed for U, and compared with ground water geochemistry from surrounding multilevel wells. At some locations, acidic U-contaminated ground water was found to preferentially flow in small remnant fractures weathering the surrounding shale (nitric acid extractable U [UNA] usually <50 mg kg–1) into thin (
Resumo:
The susceptibility of Staphylococcus aureus [meticillin-resistant (MRSA) and meticillin-sensitive (MSSA)] and coagulase-negative staphylococci (CoNS), which respectively form part of the transient and commensal skin flora, to tea-tree oil (TTO) was compared using broth microdilution and quantitative in vitro time-kill test methods. MRSA and MSSA isolates were significantly less susceptible than CoNS isolates, as measured by both MIC and minimum bactericidal concentration. A significant decrease in the mean viable count of all isolates in comparison with the control was seen at each time interval in time-kill assays. However, the only significant difference in the overall mean log(10) reduction in viable count between the groups of isolates was between CoNS and MSSA at 3 h, with CoNS isolates demonstrating a significantly lower mean reduction. To provide a better simulation of in vivo conditions on the skin, where bacteria are reported to grow as microcolonies encased in glycocalyx, the bactericidal activity of TTO against isolates grown as biofilms was also compared. Biofilms formed by MSSA and MRSA isolates were completely eradicated following exposure to 5 % TTO for 1 h. In contrast, of the biofilms formed by the nine CoNS isolates tested, only five were completely killed, although a reduction in viable count was apparent for the other four isolates. These results suggest that TTO exerts a greater bactericidal activity against biofilm-grown MRSA and MSSA isolates than against some biofilm-grown CoNS isolates.