53 resultados para second-generation migrants
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In this paper, we test the Prebish-Singer (PS) hypothesis, which states that real commodity prices decline in the long run, using two recent powerful panel data stationarity tests accounting for cross-sectional dependence and a structural break. We find that the hypothesis cannot be rejected for most commodities other than oil.
Resumo:
This paper reports the design of a Frequency Selective Surface (FSS) which simultaneously allows transmission of 175.3 – 191.3 GHz radiation and rejection from 164 - 167 GHz with a loss <0.5 dB for TE wave polarization at 45° incidence. The state-of-the art filter consists of three air spaced perforated screens with unit cells that are composed of nested resonant slots. The FSS satisfies the stringent electromagnetic performance requirements for signal demultiplexing in the quasi-optical feed train of the Microwave Sounder (MWS) instrument which is under development for the MetOp-SG mission.
Resumo:
This paper describes the design of a frequency selective surface (FSS) which provides transmission of 228 - 230 GHz radiation and rejection from 164 – 191.3 GHz with insertion losses under 0.25 dB for TE wave polarization at 45 incidence. This state-of-the art filter consists of two air spaced freestanding perforated screens, comprising unit cell elements of resonant slots folded for the purpose of miniaturisation to enhance angular stability. The reported geometry enhances the angular stability (45 ± 10) of the FSS beyond what is possible with canonical linear slots and satisfies the stringent electromagnetic performance requirements for signal demultiplexing in the quasi-optical feed train of the Microwave Sounder (MWS) instrument.
Resumo:
As the largest contributor to renewable energy, biomass (especially lignocellulosic biomass) has significant potential to address atmospheric emission and energy shortage issues. The bio-fuels derived from lignocellulosic biomass are popularly referred to as second-generation bio-fuels. To date, several thermochemical conversion pathways for the production of second-generation bio-fuels have shown commercial promise; however, most of these remain at various pre-commercial stages. In view of their imminent commercialization, it is important to conduct a profound and comprehensive comparison of these production techniques. Accordingly, the scope of this review is to fill this essential knowledge gap by mapping the entire value chain of second-generation bio-fuels, from technical, economic, and environmental perspectives. This value chain covers i) the thermochemical technologies used to convert solid biomass feedstock into easier-to-handle intermediates, such as bio-oil, syngas, methanol, and Fischer-Tropsch fuel; and ii) the upgrading technologies used to convert intermediates into end products, including diesel, gasoline, renewable jet fuels, hydrogen, char, olefins, and oxygenated compounds. This review also provides an economic and commercial assessment of these technologies, with the aim of identifying the most adaptable technology for the production of bio-fuels, fuel additives, and bio-chemicals. A detailed mapping of the carbon footprints of the various thermochemical routes to second-generation bio-fuels is also carried out. The review concludes by identifying key challenges and future trends for second-generation petroleum substitute bio-fuels.
Resumo:
Background
First generation migrants are reportedly at higher risk of mental ill-health compared to the settled population. This paper systematically reviews and synthesizes all reviews on the mental health of first generation migrants in order to appraise the risk factors for, and explain differences in, the mental health of this population.
Methods
Scientific databases were searched for systematic reviews (inception-November 2015) which provided quantitative data on the mental ill-health of first generation migrants and associated risk factors. Two reviewers screened titles, abstracts and full text papers for their suitability against pre-specified criteria, methodological quality was assessed.
Results
One thousand eight hundred twenty articles were identified, eight met inclusion criteria, which were all moderate or low quality. Depression was mostly higher in first generation migrants in general, and in refugees/asylum seekers when analysed separately. However, for both groups there was wide variation in prevalence rates, from 5 to 44 % compared with prevalence rates of 8–12 % in the general population. Post-Traumatic Stress Disorder prevalence was higher for both first generation migrants in general and for refugees/asylum seekers compared with the settled majority. Post-Traumatic Stress Disorder prevalence in first generation migrants in general and refugees/ asylum seekers ranged from 9 to 36 % compared with reported prevalence rates of 1–2 % in the general population. Few studies presented anxiety prevalence rates in first generation migrants and there was wide variation in those that did. Prevalence ranged from 4 to 40 % compared with reported prevalence of 5 % in the general population. Two reviews assessed the psychotic disorder risk, reporting this was two to three times more likely in adult first generation migrants. However, one review on the risk of schizophrenia in refugees reported similar prevalence rates (2 %) to estimates of prevalence among the settled majority (3 %). Risk factors for mental ill-health included low Gross National Product in the host country, downward social mobility, country of origin, and host country.
Conclusion
First generation migrants may be at increased risk of mental illness and public health policy must account for this and influencing factors. High quality research in the area is urgently needed as is the use of culturally specific validated measurement tools for assessing migrant mental health.
Resumo:
Introduction: Amplicon deep-sequencing using second-generation sequencing technology is an innovative molecular diagnostic technique and enables a highly-sensitive detection of mutations. As an international consortium we had investigated previously the robustness, precision, and reproducibility of 454 amplicon next-generation sequencing (NGS) across 10 laboratories from 8 countries (Leukemia, 2011;25:1840-8).
Aims: In Phase II of the study, we established distinct working groups for various hematological malignancies, i.e. acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), and multiple myeloma. Currently, 27 laboratories from 13 countries are part of this research consortium. In total, 74 gene targets were selected by the working groups and amplicons were developed for a NGS deep-sequencing assay (454 Life Sciences, Branford, CT). A data analysis pipeline was developed to standardize mutation interpretation both for accessing raw data (Roche Amplicon Variant Analyzer, 454 Life Sciences) and variant interpretation (Sequence Pilot, JSI Medical Systems, Kippenheim, Germany).
Results: We will report on the design, standardization, quality control aspects, landscape of mutations, as well as the prognostic and predictive utility of this assay in a cohort of 8,867 cases. Overall, 1,146 primer sequences were designed and tested. In detail, for example in AML, 924 cases had been screened for CEBPA mutations. RUNX1 mutations were analyzed in 1,888 cases applying the deep-sequencing read counts to study the stability of such mutations at relapse and their utility as a biomarker to detect residual disease. Analyses of DNMT3A (n=1,041) were focused to perform landscape investigations and to address the prognostic relevance. Additionally, this working group is focusing on TET2, ASXL1, and TP53 analyses. A novel prognostic model is being developed allowing stratification of AML into prognostic subgroups based on molecular markers only. In ALL, 1,124 pediatric and adult cases have been screened, including 763 assays for TP53 mutations both at diagnosis and relapse of ALL. Pediatric and adult leukemia expert labs developed additional content to study the mutation incidence of other B and T lineage markers such as IKZF1, JAK2, IL7R, PAX5, EP300, LEF1, CRLF2, PHF6, WT1, JAK1, PTEN, AKT1, IL7R, NOTCH1, CREBBP, or FBXW7. Further, the molecular landscape of CLL is changing rapidly. As such, a separate working group focused on analyses including NOTCH1, SF3B1, MYD88, XPO1, FBXW7 and BIRC3. Currently, 922 cases were screened to investigate the range of mutational burden of NOTCH1 mutations for their prognostic relevance. In MDS, RUNX1 mutation analyses were performed in 977 cases. The prognostic relevance of TP53 mutations in MDS was assessed in additional 327 cases, including isolated deletions of chromosome 5q. Next, content was developed targeting genes of the cellular splicing component, e.g. SF3B1, SRSF2, U2AF1, and ZRSR2. In BCR-ABL1-negative MPN, nine genes of interest (JAK2, MPL, TET2, CBL, KRAS, EZH2, IDH1, IDH2, ASXL1) have been analyzed in a cohort of 155 primary myelofibrosis cases searching for novel somatic mutations and addressing their relevance for disease progression and leukemia transformation. Moreover, an assay was developed and applied to CMML cases allowing the simultaneous analysis of 25 leukemia-associated target genes in a single sequencing run using just 20 ng of starting DNA. Finally, nine laboratories are studying CML, applying ultra-deep sequencing of the BCR-ABL1 tyrosine kinase domain. Analyses were performed on 615 cases investigating the dynamics of expansion of mutated clones under various tyrosine kinase inhibitor therapies.
Conclusion: Molecular characterization of hematological malignancies today requires high diagnostic sensitivity and specificity. As part of the IRON-II study, a network of laboratories analyzed a variety of disease entities applying amplicon-based NGS assays. Importantly, the consortium not only standardized assay design for disease-specific panels, but also achieved consensus on a common data analysis pipeline for mutation interpretation. Distinct working groups have been forged to address scientific tasks and in total 8,867 cases had been analyzed thus far.
Resumo:
In view of the evidence that cognitive deficits in schizophrenia are critically important for long-term outcome, it is essential to establish the effects that the various antipsychotic compounds have on cognition, particularly second-generation drugs. This parallel group, placebo-controlled study aimed to compare the effects in healthy volunteers (n = 128) of acute doses of the atypical antipsychotics amisulpride (300 mg) and risperidone (3 mg) to those of chlorpromazine (100 mg) on tests thought relevant to the schizophrenic process: auditory and visual latent inhibition, prepulse inhibition of the acoustic startle response, executive function and eye movements. The drugs tested were not found to affect auditory latent inhibition, prepulse inhibition or executive functioning as measured by the Cambridge Neuropsychological Test Battery and the FAS test of verbal fluency. However, risperidone disrupted and amisulpride showed a trend to disrupt visual latent inhibition. Although amisulpride did not affect eye movements, both risperidone and chlorpromazine decreased peak saccadic velocity and increased antisaccade error rates, which, in the risperidone group, correlated with drug-induced akathisia. It was concluded that single doses of these drugs appear to have little effect on cognition, but may affect eye movement parameters in accordance with the amount of sedation and akathisia they produce. The effect risperidone had on latent inhibition is likely to relate to its serotonergic properties. Furthermore, as the trend for disrupted visual latent inhibition following amisulpride was similar in nature to that which would be expected with amphetamine, it was concluded that its behaviour in this model is consistent with its preferential presynaptic dopamine antagonistic activity in low dose and its efficacy in the negative symptoms of schizophrenia.
Resumo:
The proteasome is a multicatalytic enzyme complex responsible for the regulated degradation of intracellular proteins. In recent years, inhibition of proteasome function has emerged as a novel anti-cancer therapy. Proteasome inhibition is now established as an effective treatment for relapsed and refractory multiple myeloma and offers great promise for the treatment of other haematological malignancies, when used in combination with conventional therapeutic agents. Bortezomib is the first proteasome inhibitor to be used clinically and a second generation of proteasome inhibitors with differential pharmacological properties are currently in early clinical trials. This review summarises the development of proteasome inhibitors as therapeutic agents and describes how novel assays for measuring proteasome activity and inhibition may help to further delineate the mechanisms of action of different proteasome inhibitors. This will allow for the optimized use of proteasome inhibitors in combination therapies and provide the opportunity to design more potent and therapeutically efficacious proteasome inhibitors.
Resumo:
Second-generation carnosine analogs bearing the histidyl-hydrazide moiety have been synthesized and tested for their efficiency in scavenging malondialdehyde (MDA) derived from lipid peroxidation and for their ability to reverse the glycation process in the glucose-ethylamine Schiff base model. The data obtained indicate that this class of compounds maintains the activity profile of carnosine and is a suitable candidate for the treatment of disorders caused by oxidative stress.
Resumo:
For the first time, the electrochemistry of gold has been studied in detail in a 'second-generation', non-haloaluminate, ionic liquid. In particular, the electrochemical behaviour of Na[AuCl4] has been investigated in 1-butyl-3-methylimidazolium bis{(tifluoromethyl)sulfonyl} imide, [C(4)mim][NTf2], over gold, platinum and glassy carbon working electrodes. The reduction of [AuCl4](-) initially forms [AuCl2](-) before deposition on the electrode as Au(0). To enable stripping of deposited gold or electrodissolution of bulk gold, the presence of chloride, trichloride or chlorine is required. Specifically trichloride and chlorine have been identified as the active species which preferentially form Au(I) and Au(III), respectively.
Resumo:
PURPOSE:
Treatment options for older patients with acute myeloid leukemia (AML) who are not considered suitable for intensive chemotherapy are limited. We assessed the second-generation purine nucleoside analog, clofarabine, in two similar phase II studies in this group of patients.
PATIENTS AND METHODS:
Two consecutive studies, UWCM-001 and BIOV-121, recruited untreated older patients with AML to receive up to four or six 5-day courses of clofarabine. Patients in UWCM-001 were either older than 70 years or 60 to 69 years of age with poor performance status (WHO > 2) or with cardiac comorbidity. Patients in BIOV-121 were >or= 65 years of age and deemed unsuitable for intensive chemotherapy.
RESULTS:
A total of 106 patients were treated in the two monotherapy studies. Median age was 71 years (range, 60 to 84 years), 30% had adverse-risk cytogenetics, and 36% had a WHO performance score >or= 2. Forty-eight percent had a complete response (32% complete remission, 16% complete remission with incomplete peripheral blood count recovery), and 18% died within 30 days. Interestingly, response and overall survival were not inferior in the adverse cytogenetic risk group. The safety profile of clofarabine in these elderly patients with AML who were unsuitable for intensive chemotherapy was manageable and typical of a cytotoxic agent in patients with acute leukemia. Patients had similar prognostic characteristics to matched patients treated with low-dose cytarabine in the United Kingdom AML14 trial, but had significantly superior response and overall survival.
CONCLUSION:
Clofarabine is active and generally well tolerated in this patient group. It is worthy of further evaluation in comparative trials and might be of particular use in patients with adverse cytogenetics.
Resumo:
Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) are techniques that combine the effects of visible light irradiation with subsequent biochemical events that arise from the presence of a photosensitizing drug (possessing no dark toxicity) to cause destruction of selected cells. Despite its still widespread clinical use, Photofrin (R) has several drawbacks that limit its general clinical use. Consequently, there has been extensive research into the design of improved alternative photosensitizers aimed at overcoming these drawbacks. While there are many review articles on the subject of PDT and PACT, these have focused on the photosensitizers that have been used clinically, with little emphasis placed on how the chemical aspects of the molecule can affect their efficacy as PDT agents. Indeed, many of the PDT/PACT agents used clinically may not even be the most appropriate within a given class. As such, this review aims to provide a better understanding of the factors that have been investigated, while aiming at improving the efficacy of a molecule intended to be used as a photosensitizer. Recent publications, spanning the last 5 years, concerning the design, synthesis and clinical usage of photosensitizers for application in PDT and PACT are reviewed, including 5-aminolevulinic acid, porphyrins, chlorins, bacteriochlorins, texaphyrins, phthalocyanines and porphycenes. It has been shown that there are many important considerations when designing a potential PDT/PACT agent, including the influence of added groups on the lipophilicity of the molecule, the positioning and nature of these added groups within the molecule, the presence of a central metal ion and the number of charges that the molecule possesses. The extensive ongoing research within the field has led to the identification of a number of potential lead molecules for application in PDT/PACT. The development of the second-generation photosensitizers, possessing shorter periods of photosensitization, longer activation wavelengths and greater selectivity for diseased tissue provides hope for attaining the ideal photosensitizer that may help PDT and PACT move from laboratory investigation to clinical practice.
Resumo:
The ubiquitin proteasome pathway plays a critical role in regulating many processes in the cell which are important for tumour cell growth and survival. Inhibition of proteasome function has emerged as a powerful strategy for anti-cancer therapy. Clinical validation of the proteasome as a therapeutic target was achieved with bortezomib and has prompted the development of a second generation of proteasome inhibitors with improved pharmacological properties. This review summarises the main mechanisms of action of proteasome inhibitors in cancer, the development of proteasome inhibitors as therapeutic agents and the properties and progress of next generation proteasome inhibitors in the clinic.