135 resultados para prediction interval (Lis)

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To simultaneously evaluate 14 biomarkers from distinct biological pathways for risk prediction of ischemic stroke, including biomarkers of hemostasis, inflammation, and endothelial activation as well as chemokines and adipocytokines.
Methods and Results: The Prospective Epidemiological Study on Myocardial Infarction (PRIME) is a cohort of 9771 healthy men 50 to 59 years of age who were followed up over 10 years. In a nested case–control study, 95 ischemic stroke cases were matched with 190 controls. After multivariable adjustment for traditional risk factors, fibrinogen (odds ratio [OR], 1.53; 95% confidence interval [CI], 1.03–2.28), E-selectin (OR, 1.76; 95% CI, 1.06–2.93), interferon-γ-inducible-protein-10 (OR, 1.72; 95% CI, 1.06–2.78), resistin (OR, 2.86; 95% CI, 1.30–6.27), and total adiponectin (OR, 1.82; 95% CI, 1.04–3.19) were significantly associated with ischemic stroke. Adding E-selectin and resistin to a traditional risk factor model significantly increased the area under the receiver-operating characteristic curve from 0.679 (95% CI, 0.612–0.745) to 0.785 and 0.788, respectively, and yielded a categorical net reclassification improvement of 29.9% (P=0.001) and 28.4% (P=0.002), respectively. Their simultaneous inclusion in the traditional risk factor model increased the area under the receiver-operating characteristic curve to 0.824 (95% CI, 0.770–0.877) and resulted in an net reclassification improvement of 41.4% (P<0.001). Results were confirmed when using continuous net reclassification improvement.
Conclusion: Among multiple biomarkers from distinct biological pathways, E-selectin and resistin provided incremental and additive value to traditional risk factors in predicting ischemic stroke.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of subjects at high risk for Alzheimer’s disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimer’s disease and the accuracy of Alzheimer’s disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimer’s Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimer’s disease (P = 4.9 × 10−26). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10−19). The best prediction accuracy AUC = 78.2% (95% confidence interval 77–80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimer’s disease has a significant polygenic component, which has predictive utility for Alzheimer’s disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note presents a simple model for prediction of liquid hold-up in two-phase horizontal pipe flow for the stratified roll wave (St+RW) flow regime. Liquid hold-up data for horizontal two-phase pipe flow [1, 2, 3, 4, 5 and 6] exhibit a steady increase with liquid velocity and a more dramatic fall with increasing gas rate as shown by Hand et al. [7 and 8] for example. In addition the liquid hold-up is reported to show an additional variation with pipe diameter. Generally, if the initial liquid rate for the no-gas flow condition gives a liquid height below the pipe centre line, the flow patterns pass successively through the stratified (St), stratified ripple (St+R), stratified roll wave, film plus droplet (F+D) and finally the annular (A+D, A+RW, A+BTS) regimes as the gas rate is increased. Hand et al. [7 and 8] have given a detailed description of this progression in flow regime development and definitions of the patterns involved. Despite the fact that there are over one hundred models which have been developed to predict liquid hold-up, none have been shown to be universally useful, while only a handful have proven to be applicable to specific flow regimes [9, 10, 11 and 12]. One of the most intractable regimes to predict has been the stratified roll wave pattern where the liquid hold-up shows the most dramatic change with gas flow rate. It has been suggested that the momentum balance-type models, which give both hold-up and pressure drop prediction, can predict universally for all flow regimes but particularly in the case of the difficult stratified roll wave pattern. Donnelly [1] recently demonstrated that the momentum balance models experienced some difficulties in the prediction of this regime. Without going into lengthy details, these models differ in the assumed friction factor or shear stress on the surfaces within the pipe particularly at the liquid–gas interface. The Baker–Jardine model [13] when tested against the 0.0454 m i.d. data of Nguyen [2] exhibited a wide scatter for both liquid hold-up and pressure drop as shown in Fig. 1. The Andritsos–Hanratty model [14] gave better prediction of pressure drop but a wide scatter for liquid hold-up estimation (cf. Fig. 2) when tested against the 0.0935 m i.d. data of Hand [5]. The Spedding–Hand model [15], shown in Fig. 3 against the data of Hand [5], gave improved performance but was still unsatisfactory with the prediction of hold-up for stratified-type flows. The MARS model of Grolman [6] gave better prediction of hold-up (cf. Fig. 4) but deterioration in the estimation of pressure drop when tested against the data of Nguyen [2]. Thus no method is available that will accurately predict liquid hold-up across the whole range of flow patterns but particularly for the stratified plus roll wavy regime. The position is particularly unfortunate since the stratified-type regimes are perhaps the most predominant pattern found in multiphase lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper NOx emissions modelling for real-time operation and control of a 200 MWe coal-fired power generation plant is studied. Three model types are compared. For the first model the fundamentals governing the NOx formation mechanisms and a system identification technique are used to develop a grey-box model. Then a linear AutoRegressive model with eXogenous inputs (ARX) model and a non-linear ARX model (NARX) are built. Operation plant data is used for modelling and validation. Model cross-validation tests show that the developed grey-box model is able to consistently produce better overall long-term prediction performance than the other two models.