21 resultados para power-aware routing
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.
Resumo:
Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.
Resumo:
The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling-parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today's systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs ( logic, memory, mixed-signal) that are included in today's complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems.
Resumo:
This study introduces an inexact, but ultra-low power, computing architecture devoted to the embedded analysis of bio-signals. The platform operates at extremely low voltage supply levels to minimise energy consumption. In this scenario, the reliability of static RAM (SRAM) memories cannot be guaranteed when using conventional 6-transistor implementations. While error correction codes and dedicated SRAM implementations can ensure correct operations in this near-threshold regime, they incur in significant area and energy overheads, and should therefore be employed judiciously. Herein, the authors propose a novel scheme to design inexact computing architectures that selectively protects memory regions based on their significance, i.e. their impact on the end-to-end quality of service, as dictated by the bio-signal application characteristics. The authors illustrate their scheme on an industrial benchmark application performing the power spectrum analysis of electrocardiograms. Experimental evidence showcases that a significance-based memory protection approach leads to a small degradation in the output quality with respect to an exact implementation, while resulting in substantial energy gains, both in the memory and the processing subsystem.
Resumo:
Radio-based signalling devices will play an important role in future generations of remote patient monitoring equipment, both at home and in hospital. Ultimately, it will be possible to sample vital signs frompatients, whatever their location and without them necessarily being aware that a measurement is being taken. This paper reviews currentmethods for the transmission by radio of physiological parameters over ranges of 0.3, 3 and 30 m, and describes the radiofrequency hardware required and the carrier frequencies commonly used. Future developments, including full duplex systems and the use of more advanced modulation schemes, are described. The paper concludeswith a case studyof a humantemperature telemeter built to indicateovulation. Clinical results clearly show the advantage to be had in adopting radio biotelemetry in this instance.
Resumo:
Computing has recently reached an inflection point with the introduction of multicore processors. On-chip thread-level parallelism is doubling approximately every other year. Concurrency lends itself naturally to allowing a program to trade performance for power savings by regulating the number of active cores; however, in several domains, users are unwilling to sacrifice performance to save power. We present a prediction model for identifying energy-efficient operating points of concurrency in well-tuned multithreaded scientific applications and a runtime system that uses live program analysis to optimize applications dynamically. We describe a dynamic phase-aware performance prediction model that combines multivariate regression techniques with runtime analysis of data collected from hardware event counters to locate optimal operating points of concurrency. Using our model, we develop a prediction-driven phase-aware runtime optimization scheme that throttles concurrency so that power consumption can be reduced and performance can be set at the knee of the scalability curve of each program phase. The use of prediction reduces the overhead of searching the optimization space while achieving near-optimal performance and power savings. A thorough evaluation of our approach shows a reduction in power consumption of 10.8 percent, simultaneous with an improvement in performance of 17.9 percent, resulting in energy savings of 26.7 percent.
Resumo:
A dynamic global security-aware synthesis flow using the SystemC language is presented. SystemC security models are first specified at the system or behavioural level using a library of SystemC behavioural descriptions which provide for the reuse and extension of security modules. At the core of the system is incorporated a global security-aware scheduling algorithm which allows for scheduling to a mixture of components of varying security level. The output from the scheduler is translated into annotated nets which are subsequently passed to allocation, optimisation and mapping tools for mapping into circuits. The synthesised circuits incorporate asynchronous secure power-balanced and fault-protected components. Results show that the approach offers robust implementations and efficient security/area trade-offs leading to significant improvements in turnover.
Resumo:
With the increased availability of new technologies, geography educators are revisiting their pedagogical approaches to teaching and calling for opportunities to share local and international practices which will enhance the learning experience and improve students’ performance. This paper reports on the use of handheld mobile devices, fitted with GPS, by secondary (high) school pupils in geography. Two location-aware activities were completed over one academic year (one per semester) and pre-test and post-test scores for both topics revealed a statistically significant increase in pupils’ performance as measured by the standard national assessments. A learner centred educational approach was adopted with the first mobile learning activity being created by the teacher as an exemplar of effective mobile learning design. Pupils built on their experiences of using mobile learning when they were required to created their own location aware learning task for peer use. An analysis of the qualitative data from the pupils’ journals, group diaries and focus group interviews revealed the five pillars of learner centred education are addressed when using location aware technologies and the use of handheld mobile devices offered greater flexibility and autonomy to the pupils thus altering the level of power and control away from the teacher. Due to the relatively small number of participants in the study, the results are more informative than generalisable however in light of the growing interest in geo-spatial technologies in geography education, this paper offers encouragement and insight into the use of location aware technology in a compulsory school context
Resumo:
This paper describes the design, implementation, and characterization of a new type of passive power splitting and combining structure for use in a differential four-way power-combining amplifier operating at E-band. In order to achieve lowest insertion loss, input and output coils inductances are resonated with shunt capacitances. Simple C-L-C and L-C networks are proposed in order to compensate inductive loading due to routing line that would otherwise introduce mismatch and increase loss. Across 78-86 GHz band, measured insertion loss is about 7 dB. Measured return losses are >10 dB from 73 GHz to 94 GHz at the input port and >9 dB from 60 GHz to 94 GHz at the output port. When integrated with driver and power amplifier cells, the simulated complete circuit exhibits 18.2 dB gain and 20.3 dBm saturated output power.