44 resultados para poly(glutamic acid)

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the rheological/mucoadhesive properties of poly (acrylic acid) PAA organogels as platforms for drug delivery to the oral cavity. Organogels were prepared using PAA (3%, 5%, 10% w/w) dissolved in ethylene glycol (EG), propylene glycol (PG), 1,3-propylene glycol (1,3-PG), 1,5-propanediol (1,5-PD), polyethylene glycol 400 (PEG 400), or glycerol. All organogels exhibited pseudoplastic flow. The increase in storage (G') and loss (G '') moduli of organogels as a function of frequency was minimal, G '' was greater than G '' (at all frequencies), and the loss tangent <1, indicative of gel behavior. Organogels prepared using EG, PG, and 1,3-propanediol (1,3-PD) exhibited similar flow/viscoelastic properties. Enhanced rheological structuring was associated with organogels prepared using glycerol (in particular) and PEG 400 due to their interaction with adjacent carboxylic acid groups on each chain and on adjacent chains. All organogels (with the exception of 1,5-PD) exhibited greater network structure than aqueous PAA gels. Organogel mucoadhesion increased with polymer concentration. Greatest mucoadhesion was associated with glycerol-based formulations, whereas aqueous PAA gels exhibited the lowest mucoadhesion. The enhanced network structure and the excellent mucoadhesive properties of these organogels, both of which may be engineered through choice of polymer concentration/solvent type, may be clinically useful for the delivery of drugs to the oral cavity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL) has many favourable attributes for tissue engineering scaffold applications. A major drawback, however, is its slow degradation rate, typically greater than 3 years. In this study PCL was melt blended with a small percentage of poly(aspartic acid-co-lactide) (PAL) and the degradation behaviour was evaluated in phosphate buffer solution (PBS) at 37 degrees C. The addition of PAL was found to significantly enhance the degradation profile of PCL. Subsequent degradation behaviour was investigated in terms of the polymer's mechanical properties, Molecular weight (M-w), mass changes and thermal characteristics. The results indicate that the addition of PAL accelerates the degradation of PCL, with 20% mass loss recorded after just 7 months in vitro for samples containing 8 wt% PAL. The corresponding pure PCL samples exhibited no mass loss over the same time period. In vitro assessment of PCL and PCL/PAL composites in tissue Culture medium in the absence of cells revealed stable pH readings with time. SEM studies of cell/biomaterial interactions demonstrated biocompatibility of C3H10T1/2 cells with PCL and PCL/PAL composites at all concentrations of PAL additive. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioresorbable polymers such as polylactide (PIA) and polylactide-co-glycolide (PLGA) have been used successfully as biomaterials in a wide range of medical applications. However, their slow degradation rates and propensity to lose strength before mass have caused problems. A central challenge for the development of these materials is the assurance of consistent and predictable in vivo degradation. Previous work has illustrated the potential to influence polymer degradation using electron beam (e-beam) radiation. The work addressed in this paper investigates further the utilisation of e-beam radiation in order to achieve a more surface specific effect. Variation of e-beam energy was studied as a means to control the effective penetrative depth in poly-L-lactide (PLEA). PLEA samples were exposed to e-beam radiation at individual energies of 0.5 MeV, 0.75 MeV and 1.5 MeV. The near-surface region of the PLEA samples was shown to be affected by e-beam irradiation with induced changes in molecular weight, morphology, flexural strength and degradation profile. Moreover, the depth to which the physical properties of the polymer were affected is dependent on the beam energy used. Computer modelling of the transmission of each e-beam energy level used corresponded well with these findings. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iron prophyrin complex has been immobilized on the surfaces of platinum, silver, and indium doped-tin oxide coated glass by using the poly(gamma-ethyl L-glutamate)-N-(3-aminopropyl)imidazole derivative 1 as a linking agent, thus allowing-the surface-enhanced resonance Raman and UV-VIS absorption spectra and electrochemical properties of the porphyrin to be studied in solvents in which it is not normally soluble.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance (SPR) biosensor. The AuNPs were synthesized and functionalized with HS-OEG(3)-COOH by self assembling technique. Thereafter, the HS-OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti IgG antibody to form an enzyme-immunogold complex. Characterizations were performed by several methods: UV-vis absorption, DLS, HR-TEM and Fr-IR. The Au-anti IgG-HRP complex has been applied in enhancement of SPR immunoassay using a sensor chip constructed by 1:9 molar ratio of HS-OEG(6)-COOH and HS-OEG(3)-OH for detection of anti-GAD antibody. As a result, AuNPs showed their enhancement as being consistent with other previous studies while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. The limit of detection was found as low as 0.03 ng/ml of anti-GAD antibody (or 200 fM) which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: In this study, colloidal gold nanoparticle and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance biosensor.

Methods: The colloidal gold nanoparticle was synthesized as described by Turkevitch et al., and their surface was firstly functionalized with HS(CH2)11(OCH2CH2)3COOH (OEG3¬-COOH) by self assembling technique. Thereafter, those OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti-IgG antibody (specific to the Fc portion of all human IgG subclasses) to form an enzyme-immunogold complex. Characterization was performed by several methods: UV-Vis absorption, dynamic light scattering (DLS), transmission electron microscopy (TEM) and FTIR. The as-prepared enzyme-immunogold complex has been applied in enhancement of SPR immunoassay. A sensor chip used in the experiment was constructed by using 1:10 molar ratio of HS(CH2)11(OCH2CH2)6COOH and HS(CH2)11(OCH2CH2)3OH. The capture protein, GAD65 (autoantigen) which is recognized by anti-GAD antibody (autoantibody) in the sera of insulin-dependent diabetes mellitus patients, was immobilized onto the 1:10 surface via biotin-streptavidin interaction.

Results and conclusions: In the research, we reported the influences of gold nanoparticle and enzyme precipitation on the enhancement of SPR signal. Gold nanoparticle showed its enhancement as being consistent with other previous studies, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. As the results, anti-GAD antibody could be detected at pg/ml level which is far higher than that of commercial ELISA detection kit. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current treatment strategies for the treatment of brain tumor have been hindered primarily by the presence of highly lipophilic insurmountable blood-brain barrier (BBB). The purpose of current research was to investigate the efficiency of engineered biocompatible polymeric nanoparticles (NPs) as drug delivery vehicle to bypass the BBB and enhance biopharmaceutical attributes of anti-metabolite methotrexate (MTX) encapsulated NPs. The NPs were prepared by solvent diffusion method using cationic bovine serum albumin (CBA), and characterized for physicochemical parameters such as particle size, polydispersity index, and zeta-potential; while the surface modification was confirmed by FTIR, and NMR spectroscopy. Developed NPs exhibited zestful relocation of FITC tagged NPs across BBB in albino rats. Further, hemolytic studies confirmed them to be non-toxic and biocompatible as compared to free MTX. In vitro cytotoxicity assay of our engineered NPs on HNGC1 tumor cells proved superior uptake in tumor cells; and elicited potent cytotoxic effect as compared to plain NPs and free MTX solution. The outcomes of the study evidently indicate the prospective of CBA conjugated poly (D,L-lactide-co-glycolide) (PLGA) NPs loaded with MTX in brain cancer bomber with amplified capability to circumvent BBB.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aminolevulinic acid (ALA) stability within topical formulations intended for photodynamic therapy (PDT) is poor due to dimerisation to pyrazine-2,5-dipropionic acid (PY). Most strategies to improve stability use low pH vehicles, which can cause cutaneous irritancy. To overcome this problem, a novel approach is investigated that uses a non-aqueous vehicle to retard proton-induced charge separation across the 4-carbonyl group on ALA and lessen nucleophilic attack that leads to condensation dimerisation. Bioadhesive anhydrous vehicles based on methylvinylether-maleic anhydride copolymer patches and poly(ethyleneglycol) or glycerol thickened poly(acrylic acid) gels were formulated. ALA stability fell below pharmaceutically acceptable levels after 6 months, with bioadhesive patches stored at 5°C demonstrating the best stability by maintaining 86.2% of their original loading. Glycerol-based gels maintained 40.2% in similar conditions. However, ALA loss did not correspond to expected increases in PY, indicating the presence of another degradative process that prevented dimerisation. Nuclear magnetic resonance (NMR) analysis was inconclusive in respect of the mechanism observed in the patch system, but showed clearly that an esterification reaction involving ALA and both glycerol and poly(ethyleneglycol) was occurring. This was especially marked in the glycerol gels, where only 2.21% of the total expected PY was detected after 204 days at 5°C. Non-specific esterase hydrolysis demonstrated that ALA was recoverable from the gel systems, further supporting esterified binding within the gel matrices. It is conceivable that skin esterases could duplicate this finding upon topical application of the gel and convert these derivatives back to ALA in situ, provided skin penetration is not affected adversely.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study describes the formulation and physicochemical characterization of poly(acrylic acid) (PAA) organogels, designed as bioactive implants for improved treatment of infectious diseases of the oral cavity. Organogels were formulated containing a range of concentrations of PAA (3-10% w/w) and metronidazole (2 or 5% w/w, representing a model antimicrobial agent) in different nonaqueous solvents, namely, glycerol (Gly), polyethylene glycol (PEG 400), or propylene glycol (PG). Characterization of the organogels was performed using flow rheometry, compressional analysis, oscillatory rheometry, in vitro mucoadhesion, moisture uptake, and drug release, methods that provide information pertaining to the nonclinical and clinical use of these systems. Increasing the concentration of PAA significantly increased the consistency, compressibility, storage modulus, loss modulus, dynamic viscosity, mucoadhesion, and the rate of drug release. These observations may be accredited to enhanced molecular polymer entanglement. In addition, the choice of solvent directly affected the physicochemical parameters of the organogels, with noticeable differences observed between the three solvents examined. These differences were accredited to the nature of the interaction of PAA with each solvent and, importantly, the density of the resultant physical cross-links. Good correlation was observed between the viscoelastic properties and drug release, with the exception of glycerol-based formulations containing 5 and 10% w/w PAA. This disparity was due to excessive swelling during the dissolution analysis. Ideally, formulations should exhibit controlled drug release, high viscoelasticity, and mucoadhesion, but should flow under minimal stresses. Based on these criteria, PEG 400-based organogels composed of 5% or 10% w/w PAA exhibited suitable physicochemical properties and are suggested to be a potentially interesting strategy for use as bioactive implants designed for use in the oral cavity. © 2008 American Chemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study reports the formulation/characterisation of novel polymeric platforms designed to behave as low-viscosity systems in the nonaqueous state, however, following uptake of aqueous ?uids, exhibit rheological structuring and mucoadhesion. The rheological/mechanical and mucoadhesive properties of platforms containing poly(acrylic acid) (PAA, 1%, 3%, 5%, w/w) and poloxamines (Tetronic 904, 901, 704, 701, 304), both in the absence and presence of phosphate buffered saline (PBS, pH 7.4) are described. With the exception of Tetronic 904, all formulations exhibited Newtonian ?ow in the nonaqueous state, whereas, all aqueous formulations displayed pseudoplastic ?ow. The consistency and viscoelastic properties were dependent on the concentrations of PAA and PBS and Tetronic grade. PBS signi?cantly increased the consistency, viscoelasticity and mucoadhesion, reaching a maximum at a de?ned concentration of PBS that was dependent on PAA concentration and Tetronic grade. Formulations containing Tetronic 904 exhibited greatest consistency and elasticity both prior to and after dilution with PBS. Increasing PAA concentration enhanced the mucoadhesive properties. Prolonged drug release of metronidazole was observed from formulations containing 10% (w/w) PBS, 3% and, particularly, 5% (w/w) PAA. It is suggested that the physicochemical properties of formulations containing 3% or 5% (w/w) PAA and Tetronic 904, would render them suitable platforms for administration to body cavities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The degradation of resorbable polymeric devices often takes months to years. Accelerated testing at elevated temperatures is an attractive but controversial technique. The purposes of this paper include: (a) to provide a summary of the mathematical models required to analyse accelerated degradation data and to indicate the pitfalls of using these models; (b) to improve the model previously developed by Han and Pan; (c) to provide a simple version of the model of Han and Pan with an analytical solution that is convenient to use; (d) to demonstrate the application of the improved model in two different poly(lactic acid) systems. It is shown that the simple analytical relations between molecular weight and degradation time widely used in the literature can lead to inadequate conclusions. In more general situations the rate equations are only part of a complete degradation model. Together with previous works in the literature, our study calls for care in using the accelerated testing technique.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A lateral flow immunoassay (LFIA) has been developed and fully validated to detect the primary amnesic shellfish poisoning (ASP) toxin, domoic acid (DA). The performance characteristics of two versions of the test were investigated using spiked and naturally contaminated shellfish (mussels, scallops, oysters, clams, and cockles). The tests provide a qualitative result, to indicate the absence or presence of DA in extracts of shellfish tissues, at concentrations that are relevant to regulatory limits. The new rapid assay (LFIA version 2) was designed to overcome the performance limitations identified in the first version of the assay. The improved test uses an electronic reader to remove the subjective nature of the generated results, and the positive cut-off for screening of DA in shellfish was increased from 10 ppm (version 1) to 17.5 ppm (version 2). A simple extraction and test procedure was employed, which required minimal equipment and materials; results were available 15 min after sample preparation. Stability of the aqueous extracts at room temperature (22 C) at four time points (up to 245 min after extraction) and across a range of DA concentrations was 100.3±1.3% and 98.8±2.4% for pre- and post-buffered extracts, respectively. The assay can be used both within laboratory settings and in remote locations. The accuracy of the new assay, to indicate negative results at or below 10 ppm DA, and positive results at or above 17.5 ppm, was 99.5% (n=216 tests). Validation data were obtained from a 2-day, randomised, blind study consisting of multiple LFIA lots (n=3), readers (n=3) and operators (n=3), carrying out multiple extractions of mussel tissue (n=3) at each concentration (0, 10, 17.5, and 20 ppm). No matrix effects were observed on the performance of the assay with different species (mussels, scallops, oysters, clams, and cockles). There was no impact on accuracy or interference from other phycotoxins, glutamic acid or glutamine with various strip incubations (8, 10, and 12 min). The accuracy of the assay, using naturally contaminated samples to indicate negative results at or below 12.5 ppm and positive results at or above 17.5 ppm, was 100%. Variability between three LFIA lots across a range of DA concentrations, expressed as coefficient of variation (% CV), was 1.1±0.4% (n=2 days) based on quantitative readings from the electronic reader. During an 8 week stability study, accuracy of the method with test strips stored at various temperatures (6, 22, 37 and 50 C) was 100%. Validation for both versions included comparisons with results obtained using reference LC-UV methods. © 2013 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

4-Amino-5-hexynoic acid is efficiently synthesised in eight steps (overall yield 10%) from commercially available (S)-glutamic acid. The key step was conversion of an aldehyde to an acetylene using diethylmethydiazophosphonate.