60 resultados para planar Gunn diode

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A planar inductively coupled radio-frequency (rf) magnetic neutral loop discharge has been designed. It provides diagnostic access to both the main plasma production region as well as a remote plane for applications. Three coaxial coils are arranged to generate a specially designed inhomogeneous magnetic field structure with vanishing field along a ring in the discharge-the so-called neutral loop (NL). The plasma is generated by applying an oscillating rf electric field along the NL, induced through a four-turn, planar antenna operated at 13.56 MHz. Electron density and temperature measurements are performed under various parameter variations. Collisionless electron heating in the NL region allows plasma operation at comparatively low pressures, down to 10(-2) Pa, with a degree of ionization in the order of several per cent. Conventional plasma operation in inductive mode without applying the magnetic field is less efficient, in particular in the low pressure regime where the plasma cannot be sustained without magnetic fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, by investigating the influence of source/drain extension region engineering (also known as gate-source/drain underlap) in nanoscale planar double gate (DG) SOI MOSFETs, we offer new insights into the design of future nanoscale gate-underlap DG devices to achieve ITRS projections for high performance (HP), low standby power (LSTP) and low operating power (LOP) logic technologies. The impact of high-kappa gate dielectric, silicon film thickness, together with parameters associated with the lateral source/drain doping profile, is investigated in detail. The results show that spacer width along with lateral straggle can not only effectively control short-channel effects, thus presenting low off-current in a gate underlap device, but can also be optimized to achieve lower intrinsic delay and higher on-off current ratio (I-on/I-off). Based on the investigation of on-current (I-on), off-current (I-off), I-on/I-off, intrinsic delay (tau), energy delay product and static power dissipation, we present design guidelines to select key device parameters to achieve ITRS projections. Using nominal gate lengths for different technologies, as recommended from ITRS specification, optimally designed gate-underlap DG MOSFETs with a spacer-to-straggle (s/sigma) ratio of 2.3 for HP/LOP and 3.2 for LSTP logic technologies will meet ITRS projection. However, a relatively narrow range of lateral straggle lying between 7 to 8 nm is recommended. A sensitivity analysis of intrinsic delay, on-current and off-current to important parameters allows a comparative analysis of the various design options and shows that gate workfunction appears to be the most crucial parameter in the design of DG devices for all three technologies. The impact of back gate misalignment on I-on, I-off and tau is also investigated for optimized underlap devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple analytical formulas are introduced for the grid impedance of electrically dense arrays of square patches and for the surface impedance of high-impedance surfaces based on the dense arrays of metal strips or square patches over ground planes. Emphasis is on the oblique-incidence excitation. The approach is based on the known analytical models for strip grids combined with the approximate Babinet principle for planar grids located at a dielectric interface. Analytical expressions for the surface impedance and reflection coefficient resulting from our analysis are thoroughly verified by full-wave simulations and compared with available data in open literature for particular cases. The results can be used in the design of various antennas and microwave or millimeter wave devices which use artificial impedance surfaces and artificial magnetic conductors (reflect-array antennas, tunable phase shifters, etc.), as well as for the derivation of accurate higher-order impedance boundary conditions for artificial (high-) impedance surfaces. As an example, the propagation properties of surface waves along the high-impedance surfaces are studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and original mechanism to control the polarisation of uniform hybrid waveguide-planar leaky-wave antennas is proposed. The operation is based on introducing simple modifications of the planar dimensions of the structure cross-section, which is shown to control the horizontal and vertical components of the radiated fields. The proposed antenna dispenses with the need for periodic elements, commonly used in flexible polarised leaky-wave antennas, and therefore significantly reduces the design complexity. Parametric curves have been obtained to assist in the simple and efficient design of the proposed antenna. The novel mechanism is illustrated by means of several antenna prototypes operating at 5.7 GHz, producing linear, elliptical and circular polarisations. Commercial three-dimensional Finite Element Method has been used for the simulations, and the results are validated with experimental testing.[br].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A periodic finite-difference time-domain (FDTD) analysis is presented and applied for the first time in the study of a two-dimensional (2-D) leaky-wave planar antenna based on dipole frequency selective surfaces (FSSs). First, the effect of certain aspects of the FDTD modeling in the modal analysis of complex waves is studied in detail. Then, the FDTD model is used for the dispersion analysis of the antenna of interest. The calculated values of the leaky-wave attenuation constants suggest that, for an antenna of this type and moderate length, a significant amount of power reaches the edges of the antenna, and thus diffraction can play an important role. To test the validity of our dispersion analysis, measured radiation patterns of a fabricated prototype are presented and compared with those predicted by a leaky-wave approach based on the periodic FDTD results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel ionic liquid, 1-butyl-3-methylimidazolium 3,5-dinitro-1,2,4-triazolate has been synthesized and exhibits an unexpectedly low melting point (35 degreesC) considering the size and shape of the rigid, planar anion; analogous tetraalkylammonium salts (methyl, ethyl and n-butyl) have also been prepared and the tetraethylammonium example was characterized by single crystal X-ray diffraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties and characteristics of a recently proposed anisotropic metamaterial based upon layered arrays of tightly coupled pairs of "dogbone" shaped stripe conductors have been explored in detail. It has been found that a metamaterial composed of such stacked layers exhibits artificial magnetism and may support backward wave propagation. The equivalent network models of the constitutive conductor pairs arranged in the periodic array have been devised and applied to the identification of the specific types of resonances, and to the analysis of their contribution into the effective dielectric and magnetic properties of the artificial medium. The proposed "dogbone" configuration of conductor pairs has the advantage of being entirely realizable and assemblable in planar technology. It also appears more prospective than simple cut-wire or metal-plate pairs because the additional geometrical parameters provide an efficient control of separation between the electric and magnetic resonances that, in turn, makes it possible to obtain a fairly broadband left-handed behaviour of the structure at low frequencies.