131 resultados para phenotypic correlation
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Correlation of simulated and measured noise emissions using a combined 1D/3D computational technique
Resumo:
The t(4;14)(p16;q32) translocation seen in c. 18% of newly diagnosed multiple myeloma (MM) cases, results in FGFR3 activation and creation of an IGH/MMSET fusion transcript. We have recently shown that FGFR3 is activated in only 75% of t(4;14)(+) cases, suggesting that alternative genes near the breakpoint may be involved in the transforming event. The gene, TACC3, located just 50 kb telomeric of FGFR3, with transforming capacity, therefore represented a candidate gene. Using a real-time quantitative polymerase chain reaction-based approach on a cohort of 54 patients, we found a statistically significant, twofold increase in TACC3 expression in t(4;14)(+) cases. TACC3, MMSET and p21 values were positively correlated in all cases and, of particular interest, six patient samples [three t(4;14)(-), three t(4;14)(+)] samples showed a joint up-regulation of TACC3, MMSET and p21. Although a poor prognosis is linked with elevated MMSET expression, an extended follow-up period will be required to evaluate the significance of elevated TACC3 and p21 expression in this subgroup of MM.
Resumo:
The work in this paper is of particular significance since it considers the problem of modelling cross- and auto-correlation in statistical process monitoring. The presence of both types of correlation can lead to fault insensitivity or false alarms, although in published literature to date, only autocorrelation has been broadly considered. The proposed method, which uses a Kalman innovation model, effectively removes both correlations. The paper (and Part 2 [2]) has emerged from work supported by EPSRC grant GR/S84354/01 and is of direct relevance to problems in several application areas including chemical, electrical, and mechanical process monitoring.
Resumo:
The transfer ionization process offers a unique opportunity to study radial and angular electron correlations in the helium atom. We report calculations for the multiple differential cross sections of the transfer ionization process p + He --> H + He++ + e(-). The results of these calculations demonstrate the strong sensitivity of the fully differential cross sections to fine details of electron correlation in the target atom. Specifically, angular electron correlation in the ground state of helium results in a broad peak in the electron emission spectra in the backward direction, relative to the incoming beam. Our model explains some of the key effects observed in measurements of multiple differential cross sections using the COLTRIMS technique.
Resumo:
A joint theoretical-experimental study of the transfer ionization process p + He -> H-0 + He2+ + e(-) is presented. For the first time all particles in the final state have been detected in triple coincidence. This fully differential measurement is in good agreement with a theoretical model where the target is described by a wavefunction containing both radial and angular correlation terms.