7 resultados para motor learning

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, sonification of movement has emerged as a viable method for the provision of feedback in motor learning. Despite some experimental validation of its utility, controlled trials to test the usefulness of sonification in a motor learning context are still rare. As such, there are no accepted conventions for dealing with its implementation. This article addresses the question of how continuous movement information should be best presented as sound to be fed back to the learner. It is proposed that to establish effective approaches to using sonification in this context, consideration must be given to the processes that underlie motor learning, in particular the nature of the perceptual information available to the learner for performing the task at hand. Although sonification has much potential in movement performance enhancement, this potential is largely unrealised as of yet, in part due to the lack of a clear framework for sonification mapping: the relationship between movement and sound. By grounding mapping decisions in a firmer understanding of how perceptual information guides learning, and an embodied cognition stance in general, it is hoped that greater advances in use of sonification to enhance motor learning can be achieved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the 'cross activation' variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, 'bilateral access' models entail that motor engrams formed during unilateral practise, may subsequently be utilised bilaterally - that is, by the neural circuitry that constitutes the control centres for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesise and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context. © 2013 Ruddy and Carson.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to test the hypothesis that M1 is intimately involved in the initial phase of sensorimotor adaptation. Inhibitory theta burst stimulation was applied to M1 prior to a task requiring modification of torques generated about the elbow/forearm complex in response to rotations of a visual feedback display. Participants were first exposed to a 30° clockwise (CW) rotation (Block A), then a 60° counterclockwise rotation (Block B), followed immediately by a second block of 30° CW rotation (A2). In the STIM condition, participants received 20s of continuous theta burst stimulation (cTBS) prior to the initial A Block. In the conventional (CON) condition, no stimulation was applied. The overt characteristics of performance in the two conditions were essentially equivalent with respect to the errors exhibited upon exposure to a new variant of the task. There were however, profound differences between the conditions in the latency of response preparation, and the excitability of corticospinal projections from M1, which accompanied phases of de-adaptation and re-adaptation (during Blocks B and A2). Upon subsequent exposure to the A rotation 24h later, the rate of re-adaptation was lower in the stimulation condition than that present in the conventional condition. These results support the assertion that primary motor cortex assumes a key role in a network that mediates adaptation to visuomotor perturbation, and emphasise that it is engaged functionally during the early phase of learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Growth, Learning and Development (GLAD) study aimed to examine how a broad range of factors influence child weight during the first year of life. Assessments were undertaken within a multidisciplinary team framework. The sample was drawn from the community and data collection was undertaken in the four Greater Belfast Trusts. Twohundred and thirty-four families took part, each receiving a total of five home visits during which physical growth, oral-motor skills and development were assessed. Psychosocial evaluation examined parent-child interaction, feeding and other parental and child characteristics using quantitative and observational techniques. This paper outlines the main findings and recommendations from the GLAD study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the relationship between a chronometric estimate of automaticity for the spelling of French words (Automaticity) and performance on four tests of French language attainment among a sample of Year 11 students of French as a foreign language. Fifty participants each completed a computerized test of French spelling and attainment tests in four aspects of French language learning: reading comprehension, writing fluency, oral fluency, and aural comprehension. Correlations were significant between Automaticity and performance on all four tests of French language attainment as well as on overall attainment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concurrent feedback provided during acquisition can enhance performance of novel tasks. The ‘guidance hypothesis’ predicts that feedback provision leads to dependence and poor performance in its absence. However, appropriately-structured feedback information provided through sound (‘sonification’) may not be subject to this effect. We test this directly using a rhythmic bimanual shape-tracing task in which participants learned to move at a 4:3 timing ratio. Sonification of movement and demonstration was compared to two other learning conditions: (1) sonification of task demonstration alone and (2) completely silent practice (control). Sonification of movement emerged as the most effective form of practice, reaching significantly lower error scores than control. Sonification of solely the demonstration, which was expected to benefit participants by perceptually unifying task requirements, did not lead to better performance than control. Good performance was maintained by participants in the sonification condition in an immediate retention test without feedback, indicating that the use of this feedback can overcome the guidance effect. On a 24-hour retention test, performance had declined and was equal between groups. We argue that this and similar findings in the feedback literature are best explained by an ecological approach to motor skill learning which places available perceptual information at the highest level of importance.