14 resultados para machine recognition

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.

Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.

Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.

Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The grading of crushed aggregate is carried out usually by sieving. We describe a new image-based approach to the automatic grading of such materials. The operational problem addressed is where the camera is located directly over a conveyor belt. Our approach characterizes the information content of each image, taking into account relative variation in the pixel data, and resolution scale. In feature space, we find very good class separation using a multidimensional linear classifier. The innovation in this work includes (i) introducing an effective image-based approach into this application area, and (ii) our supervised classification using wavelet entropy-based features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present the application of Hidden Conditional Random Fields (HCRFs) to modelling speech for visual speech recognition. HCRFs may be easily adapted to model long range dependencies across an observation sequence. As a result visual word recognition performance can be improved as the model is able to take more of a contextual approach to generating state sequences. Results are presented from a speaker-dependent, isolated digit, visual speech recognition task using comparisons with a baseline HMM system. We firstly illustrate that word recognition rates on clean video using HCRFs can be improved by increasing the number of past and future observations being taken into account by each state. Secondly we compare model performances using various levels of video compression on the test set. As far as we are aware this is the first attempted use of HCRFs for visual speech recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concentration of organic acids in anaerobic digesters is one of the most critical parameters for monitoring and advanced control of anaerobic digestion processes. Thus, a reliable online-measurement system is absolutely necessary. A novel approach to obtaining these measurements indirectly and online using UV/vis spectroscopic probes, in conjunction with powerful pattern recognition methods, is presented in this paper. An UV/vis spectroscopic probe from S::CAN is used in combination with a custom-built dilution system to monitor the absorption of fully fermented sludge at a spectrum from 200 to 750 nm. Advanced pattern recognition methods are then used to map the non-linear relationship between measured absorption spectra to laboratory measurements of organic acid concentrations. Linear discriminant analysis, generalized discriminant analysis (GerDA), support vector machines (SVM), relevance vector machines, random forest and neural networks are investigated for this purpose and their performance compared. To validate the approach, online measurements have been taken at a full-scale 1.3-MW industrial biogas plant. Results show that whereas some of the methods considered do not yield satisfactory results, accurate prediction of organic acid concentration ranges can be obtained with both GerDA and SVM-based classifiers, with classification rates in excess of 87% achieved on test data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel method that leverages reasoning capabilities in a computer vision system dedicated to human action recognition. The proposed methodology is decomposed into two stages. First, a machine learning based algorithm - known as bag of words - gives a first estimate of action classification from video sequences, by performing an image feature analysis. Those results are afterward passed to a common-sense reasoning system, which analyses, selects and corrects the initial estimation yielded by the machine learning algorithm. This second stage resorts to the knowledge implicit in the rationality that motivates human behaviour. Experiments are performed in realistic conditions, where poor recognition rates by the machine learning techniques are significantly improved by the second stage in which common-sense knowledge and reasoning capabilities have been leveraged. This demonstrates the value of integrating common-sense capabilities into a computer vision pipeline. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to address road safety effectively, it is essential to understand all the factors, which
attribute to the occurrence of a road collision. This is achieved through road safety
assessment measures, which are primarily based on historical crash data. Recent advances
in uncertain reasoning technology have led to the development of robust machine learning
techniques, which are suitable for investigating road traffic collision data. These techniques
include supervised learning (e.g. SVM) and unsupervised learning (e.g. Cluster Analysis).
This study extends upon previous research work, carried out in Coll et al. [3], which
proposed a non-linear aggregation framework for identifying temporal and spatial hotspots.
The results from Coll et al. [3] identified Lisburn area as the hotspot, in terms of road safety,
in Northern Ireland. This study aims to use Cluster Analysis, to investigate and highlight any
hidden patterns associated with collisions that occurred in Lisburn area, which in turn, will
provide more clarity in the causation factors so that appropriate countermeasures can be put
in place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taking in recent advances in neuroscience and digital technology, Gander and Garland assess the state of the inter-arts in America and the Western world, exploring and questioning the primacy of affect in an increasingly hypertextual everyday environment. In this analysis they signal a move beyond W. J. T. Mitchell’s coinage of the ‘imagetext’ to an approach that centres the reader-viewer in a recognition, after John Dewey, of ‘art as experience’. New thinking in cognitive and computer sciences about the relationship between the body and the mind challenges any established definitions of ‘embodiment’, ‘materiality’, ‘virtuality’ and even ‘intelligence, they argue, whilst ‘Extended Mind Theory’, they note, marries our cognitive processes with the material forms with which we engage, confirming and complicating Marshall McLuhan’s insight, decades ago, that ‘all media are “extensions of man”’. In this chapter, Gander and Garland open paths and suggest directions into understandings and critical interpretations of new and emerging imagetext worlds and experiences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel bolt-on module capable of boosting the robustness of various single compact 2D gait representations. Gait recognition is negatively influenced by covariate factors including clothing and time which alter the natural gait appearance and motion. Contrary to traditional gait recognition, our bolt-on module remedies this by a dedicated covariate factor detection and removal procedure which we quantitatively and qualitatively evaluate. The fundamental concept of the bolt-on module is founded on exploiting the pixel-wise composition of covariate factors. Results demonstrate how our bolt-on module is a powerful component leading to significant improvements across gait representations and datasets yielding state-of-the-art results.