10 resultados para lithography

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arrays of gold-coated nanodomes were fabricated on glass substrates using a soft
nanoimprint lithography technique. Optical transmission measurements revealed complex
plasmonic resonances that proved highly sensitive to the array dimensions, the thickness of
the gold layer, and the refractive index of the surrounding medium. As one promising
application for these structures, the refractive index sensing capabilities of the nanodome
arrays were assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms(1). This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected(2). Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly polarized radiation(3). In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage 'shake-up' reaction(4). Here we report a unique combination of experimental techniques(5-8) that allows us to accurately measure the tunnel ionization probability for argon exposed to 50-fs laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry(7,8), equivalent to a homogenous electric field. Furthermore, circularly polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up(9). From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond extreme-ultraviolet-radiation sources(10). Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in vivo cells and nanoscale extreme-ultraviolet lithography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Absolute photoionization cross-section measurements for a mixture of ground and metastable states of Xe4+, Xe5+, and Xe6+ are reported in the photon energy range of 4d -> nf transitions, which occur within or adjacent to the 13.5 nm window for extreme ultraviolet lithography light source development. The reported values allow the quantification of opacity effects in xenon plasmas due to these 4d -> nf autoionizing states. The oscillator strengths for the 4d -> 4f and 4d -> 5f transitions in Xeq+ (q=1-6) ions are calculated using nonrelativistic Hartree-Fock and random phase approximations. These are compared with published experimental values for Xe+ to Xe3+ and with the values obtained from the present experimental cross-section measurements for Xe4+ to Xe6+. The calculations assisted in the determination of the metastable content in the ion beams for Xe5+ and Xe6+. The experiments were performed by merging a synchrotron photon beam generated by an undulator beamline of the Advanced Light Source with an ion beam produced by an electron cyclotron resonance ion source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energetic ion beams are produced during the interaction of ultrahigh-intensity, short laser pulses with plasmas. These laser-produced ion beams have important applications ranging from the fast ignition of thermonuclear targets to proton imaging, deep proton lithography, medical physics, and injectors for conventional accelerators. Although the basic physical mechanisms of ion beam generation in the plasma produced by the laser pulse interaction with the target are common to all these applications, each application requires a specific optimization of the ion beam properties, that is, an appropriate choice of the target design and of the laser pulse intensity, shape, and duration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a novel way to actively tune surface plasmons by fabricating plasmonic nanostructures on stretchable elastomeric films. This allows reversible modification of the metal geometry on the nanometer scale. Using 100 nm scale Au nanoparticle dimers whose spacing is stretch-tuned reveals radically different spectral tuning than previously reported for sub-10-nm nanoparticles, but which can be explained by a revised interpretation of existing models. Tuning plasmons in this way offers a much more robust way than lithography to interrogate the physics of localized plasmons and has applications in optimized surface-enhanced luminescence and Raman scattering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frustration – the inability to simultaneously satisfy all interactions – occurs in a wide range of systems including neural networks, water ice and magnetic systems. An example of the latter is the so called spin-ice in pyrochlore materials [1] which have attracted a lot of interest not least due to the emergence of magnetic monopole defects when the ‘ice rules’ governing the local ordering breaks down [2]. However it is not possible to directly measure the frustrated property – the direction of the magnetic moments – in such spin ice systems with current experimental techniques. This problem can be solved by instead studying artificial spin-ice systems where the molecular magnetic moments are replaced by nanoscale ferromagnetic islands [3-8]. Two different arrangements of the ferromagnetic islands have been shown to exhibit spin ice behaviour: a square lattice maintaining four moments at each vertex [3,8] and the Kagome lattice which has only three moments per vertex but equivalent interactions between them [4-7]. Magnetic monopole defects have been observed in both types of lattices [7-8]. One of the challenges when studying these artificial spin-ice systems is that it is difficult to arrive at the fully demagnetised ground-state [6-8].
Here we present a study of the switching behaviour of building blocks of the Kagome lattice influenced by the termination of the lattice. Ferromagnetic islands of nominal size 1000 nm by 100 nm were fabricated in five island blocks using electron-beam lithography and lift-off techniques of evaporated 18 nm Permalloy (Ni80Fe20) films. Each block consists of a central island with four arms terminated by a different number and placement of ‘injection pads’, see Figure 1. The islands are single domain and magnetised along their long axis. The structures were grown on a 50 nm thick electron transparent silicon nitride membrane to allow TEM observation, which was back-coated with a 5 nm film of Au to prevent charge build-up during the TEM experiments.
To study the switching behaviour the sample was subjected to a magnetic field strong enough to magnetise all the blocks in one direction, see Figure 1. Each block obeys the Kagome lattice ‘ice-rules’ of “2-in, 1-out” or “1-in, 2-out” in this fully magnetised state. Fresnel mode Lorentz TEM images of the sample were then recorded as a magnetic field of increasing magnitude was applied in the opposite direction. While the Fresnel mode is normally used to image magnetic domain structures [9] for these types of samples it is possible to deduce the direction of the magnetisation from the Lorentz contrast [5]. All images were recorded at the same over-focus judged to give good Lorentz contrast.
The magnetisation was found to switch at different magnitudes of the applied field for nominally identical blocks. However, trends could still be identified: all the blocks with any injection pads, regardless of placement and number, switched the direction of the magnetisation of their central island at significantly smaller magnitudes of the applied magnetic field than the blocks without injection pads. It can therefore be concluded that the addition of an injection pad lowers the energy barrier to switching the connected island, acting as a nucleation site for monopole defects. In these five island blocks the defects immediately propagate through to the other side, but in a larger lattice the monopoles could potentially become trapped at a vertex and observed [10].
References

[1] M J Harris et al, Phys Rev Lett 79 (1997) p.2554.
[2] C Castelnovo, R Moessner and S L Sondhi, Nature 451 (2008) p. 42.
[3] R F Wang et al, Nature 439 (2006) 303.
[4] M Tanaka et al, Phys Rev B 73 (2006) 052411.
[5] Y Qi, T Brintlinger and J Cumings, Phys Rev B 77 (2008) 094418.
[6] E Mengotti et al, Phys Rev B 78 (2008) 144402.
[7] S Ladak et al, Nature Phys 6 (2010) 359.
[8] C Phatak et al, Phys Rev B 83 (2011) 174431.
[9] J N Chapman, J Phys D 17 (1984) 623.
[10] The authors gratefully acknowledge funding from the EPSRC under grant number EP/D063329/1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large areas of perfectly ordered magnetic CoFe2O4 nanopillars embedded in a ferroelectric BiFeO3 matrix were successfully fabricated via a novel nucleation-induced self-assembly process. The nucleation centers of the magnetic pillars are induced before the growth of the composite structure using anodic aluminum oxide (AAO) and lithography-defined gold membranes as hard mask. High structural quality and good functional properties were obtained. Magneto-capacitance data revealed extremely low losses and magneto-electric coupling of about 0.9 mu C/cmOe. The present fabrication process might be relevant for inducing ordering in systems based on phase separation, as the nucleation and growth is a rather general feature of these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A "top-down" approach using a-beam lithography and a "bottom-up" one using self-assembly methods were used to fabricate ferroelelectric Pb(Zr,Ti)O-3, SrBi2Ta2O9 and BaTiO3 nanostructures with lateral sizes in the range of 30 nm to 100 nm. Switching of single sub-100 nm cells was achieved and piezoelectric hysteresis loops were recorded using a scanning force microscope working in piezoresponse mode. The piezoelectricity and its hysteresis acquired for 100 nm PZT cells demonstrate that a further decrease in lateral size under 100 nm appears to be possible and that the size effects are not fundamentally limiting on increase density of non-volatile ferroelectric memories in the Gbit range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect.