6 resultados para kinetics characterization
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper presents a new strategy, “state-by-state transient screening”, for kinetic characterization of states of a multicomponent catalyst as applied to TAP pulse-response experiments. The key idea is to perform an insignificant chemical perturbation of the catalytic system so that the known essential characteristics of the catalyst (e.g. oxidation degree) do not change during the experiment. Two types of catalytic substances can be distinguished: catalyst state substances, which determine the catalyst state, and catalyst dynamic substances, which are created by the perturbation. The general methodological and theoretical framework for multi-pulse TAP experiments is developed, and the general model for a one-pulse TAP experiment is solved. The primary kinetic characteristics, basic kinetic coefficients, are extracted from diffusion–reaction data and calculated as functions of experimentally measured exit-flow moments without assumptions regarding the detailed kinetic mechanism. The new strategy presented in this paper provides essential information, which can be a basis for developing a detailed reaction mechanism. The theoretical results are illustrated using furan oxidation over a VPO catalyst.
Resumo:
The current study monitors both the short- and long-term hydration characteristics of concrete using discretized conductivity measurements from initial gauging, through setting and hardening, the latter comprising both the curing and post-curing periods. In particular, attention is directed to the near-surface concrete as it is this zone which protects the steel from the external environment and has a major influence on durability, performance and service-life. A wide range of concrete mixes is studied comprising both plain Portland cement concretes and concretes containing fly-ash and ground granulated blast furnace slag. The parameter normalised conductivity was used to identify four distinct stages in the hydration process and highlight the influence of supplementary cementitious materials (SCM) on hydration and hydration kinetics. A relationship has been presented to account for the temporal decrease in conductivity, post 10-days hydration. The testing procedure and methodology presented lend itself to in-situ monitoring of reinforced concrete structures. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The kinetics of photomineralization of 4-chlorophenol (4-CP) sensitized by Degussa P25 TiO2 in O2-saturated solution is studied as a function of the following different experimental parameters: pH, [TiO2], percentage O2 [O2], [4-CP], T, I, lambda and [KNO3]. At pH 2 and T=30-degrees-C the initial relative rate of CO2 photogeneration R(CO2) conforms to a Langmuir-Hinshelwood-type kinetic scheme and the relationship between R(CO2) and the various experimental parameters may be summarized as follows: R(CO2) = gammaK(O2)[O2](I(a))(theta)K(4-CP]0/(1 + K(O2])(1 + K(4-CP)[4-CP]0) where gamma is a proportionality constant, K(O2) = 0.044 +/- 0.005[O2]-1, theta = 0.74 +/- 0.05 and K(4-CP) = (29 +/- 3) x 10(3) dm3 mol-1. The overall activation energy for this photosystem was determined as 16 +/- 2 kJ mol-1. This work forms part of an overall characterization study in which it is proposed that the 4-CP-TiO2-O2 photosystem is adopted as a standard test system for incorporation into all future semiconductor-sensitized photomineralization studies in order to facilitate comparisons between the results of the different studies.
Resumo:
This manuscript describes the application and further development of the TAP technique in kinetic characterization of heterogeneous catalysis. The major application of TAP systems is to study mechanisms, kinetics and transport phenomena in heterogeneous catalysis, all of which is made possible by the sub-millisecond time resolution. Furthermore, the kinetic information obtained can be used to gain an insight into the mechanism occurring over the catalyst system. This is advantageous as heterogeneous catalysts with an improved efficiency can be developed as a result. TAP kinetic studies are carried out at low pressure (~1x10-7 mbar) and TAP pulses are sufficiently small (1013-1015 molecules) so as to maintain this low pressure. The use of a small number of molecules in comparison to the total number of active sites means the state of the catalyst remains relatively unchanged. The use of the low intensity pulses also makes the pressure gradient negligible and so allows the TAP reactor system to operate in the Knudsen Diffusion regime, where gas-gas reactions are eliminated. Hence only gas-catalyst reactions are investigated and, by the use of moment analysis of observed exit flow, rate constants of elementary steps of the reaction can be obtained.
In this manuscript, two attempts to further the TAP technique are reported. Firstly, the work undertaken at QUB to attempt to control the number of molecules of condensable reagents that can be pulsed during a TAP pulse experiment is disclosed. Secondly, a collaborative project with SAI Ltd Manchester is discussed in a separate chapter, where technical details and validation of a customised time of flight mass spectrometer (ToF MS) for the QUB TAP-1 system are reported. A collaborative project with Cardiff Catalysis Institute focusing on the study of CO oxidation over hopcalite catalysts is also reported. The analysis of the experimental results has provided an insight into the possible mechanism of the oxidation of CO over these catalysts. A correction function has also been derived which accounts for the adsorption of reactant molecules over inert materials that are used for the reactor packing in TAP experiments. This function was then applied to the selective reduction of O2 in a H2 rich ethene feed, so that more accurate TAP moment based analysis could be conducted.
Resumo:
The development and optimization of catalysts and catalytic processes requires knowledge of reaction kinetics and mechanisms. In traditional catalyst kinetic characterization, the gas composition is known at the inlet, and the exit flow is measured to determine changes in concentration. As such, the progression of the chemistry within the catalyst is not known. Technological advances in electromagnetic and physical probes have made visualizing the evolution of the chemistry within catalyst samples a reality, as part of a methodology commonly known as spatial resolution. Herein, we discuss and evaluate the development of spatially resolved techniques, including the evolutions and achievements of this growing area of catalytic research. The impact of such techniques is discussed in terms of the invasiveness of physical probes on catalytic systems, as well as how experimentally obtained spatial profiles can be used in conjunction with kinetic modelling. Furthermore, some aims and aspirations for further evolution of spatially resolved techniques are considered.