25 resultados para industrial application

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The knowledge of the chemical stability as a function of the temperature of ionic liquids (ILs) in the presence of other molecules such as water is crucial prior to developing any no GO industrial application and process involving these novel materials. Fluid phase equilibria and density over a large range of temperature and composition can give basic information on IL purity and chemical stability. The IL scientific community requires accurate measurements accessed from reference data. In this work, the stability of different alkyl sulfate-based ILs in the presence of water and various alcohols (methanol, ethanol, 1-butanol, and 1-octanol) was investigated to understand their stability as a function of temperature up to 423.15 K over the hydrolysis and transesterification reactions, respectively. From this investigation, it was clear that methyl sulfate- and ethyl sulfate-based ILs are not stable in the presence of water, since hydrolysis of the methyl sulfate or ethyl sulfate anions to methanol or ethanol and hydrogenate anion is undoubtedly observed. Such observations could help to explain the differences observed for the physical properties published in the literature by various groups. Furthermore, it appears that a thermodynamic equilibrium process drives these hydrolysis reactions. In other words, these hydrolysis reactions are in fact reversible, providing the possibility to re-form the desired alkyl sulfate anions by a simple transesterification reaction between hydrogen sulfate-based ILs and the corresponding alcohol (methanol or ethanol). Additionally, butyl sulfate- and octyl sulfate-based ILs appear to follow this pattern but under more drastic conditions. In these systems, hydrolysis is observed in both cases after several months for temperatures up to 423 K in the presence of water. Therein, the partial miscibility of hydrogen sulfate-based ILs with long chain alcohols (1-butanol and 1-octanol) can help to explain the enhanced hydrolytic stability of the butyl sulfate- and octyl sulfate-based ILs compared with the methyl or ethyl sulfate systems. Additionally, rapid transesterification reactions are observed during liquid-liquid equilibrium studies as a function of temperature for binary systems of (hydrogen sulfate-based ionic liquids + 1-butanol) and of (hydrogen sulfate-based ionic liquids + 1-octanol). Finally, this atom-efficient catalyst-free transesterification reaction between hydrogen sulfate-based ILs and alcohol was then tested to provide a novel way to synthesize new ILs with various anion structures containing the alkyl sulfate group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Being a new generation of green solvents and high-tech reaction media of the future, ionic liquids have increasingly attracted much attention. Of particular interest in this context are room temperature ionic liquids (in short as ILs in this paper). Due to the relatively high viscosity, ILs is expected to be used in the form of solvent diluted mixture with reduced viscosity in industrial application, where predicting the viscosity of IL mixture has been an important research issue. Different IL mixture and many modelling approaches have been investigated. The objective of this study is to provide an alternative model approach using soft computing technique, i.e., artificial neural network (ANN) model, to predict the compositional viscosity of binary mixtures of ILs [C n-mim][NTf 2] with n=4, 6, 8, 10 in methanol and ethanol over the entire range of molar fraction at a broad range of temperatures from T=293.0-328.0K. The results show that the proposed ANN model provides alternative way to predict compositional viscosity successfully with highly improved accuracy and also show its potential to be extensively utilized to predict compositional viscosity taking account of IL alkyl chain length, as well as temperature and compositions simultaneously, i.e., more complex intermolecular interactions between components in which it would be hard or impossible to establish the analytical model. This illustrates the potential application of ANN in the case that the physical and thermodynamic properties are highly non-linear or too complex. © 2012 Copyright the authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of high energetic electrons (>= 11.7 eV) in a modified industrial confined dual-frequency capacitively coupled RF discharge (Exelan, Lam Research Inc.), operated at 1.937 MHz and 27.118 MHz, is investigated by means of phase resolved optical emission spectroscopy. Operating in a He-O-2. plasma with small rare gas admixtures the emission is measured, with one-dimensional spatial resolution along the discharge axis. Both the low and high frequency RF cycle are resolved. The diagnostic is based on time dependent measurements of the population densities of specifically chosen excited rare gas states. A time dependent model, based on rate equations, describes the dynamics of the population densities of these levels. Based on this model and the comparison of the excitation of various rare gas states, with different excitation thresholds, time and space resolved electron temperature, propagation velocity and qualitative electron density as well as electron energy distribution functions are determined. This information leads to a better understanding of the dual-frequency sheath dynamics and shows, that separate control of ion energy and electron density is limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABSs) have been investigated as tunable reaction media, in the example presented here, to control the oxidation of cyclohexene to adipic acid with hydrogen peroxide. The production of adipic acid was found to increase from the monophasic to the biphasic regimes, was greatest at short tie-line lengths (close to the system's critical point), and demonstrates how control of the ABS media, through changes in system composition, PEG, salt, and tie-line length, can be used to readily tune and control reactivity and product isolation in these aqueous biphasic reactive extraction systems. Challenges in using this system, including possible oxidation reactions of the PEG-OH end groups, are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study concerns the spatial allocation of material flows, with emphasis on construction material in the Irish housing sector. It addresses some of the key issues concerning anthropogenic impact on the environment through spatial temporal visualisation of the flow of materials, wastes and emissions at different spatial levels. This is presented in the form of a spatial model, Spatial Allocation of Material Flow Analysis (SAMFA), which enables the simulation of construction material flows and associated energy use. SAMFA parallels the Island Limits project (EPA funded under 2004-SD-MS-22-M2), which aimed to create a material flow analysis of the Irish economy classified by industrial sector. SAMFA further develops this by attempting to establish the material flows at the subnational geographical scale that could be used in the development of local authority (LA) sustainability strategies and spatial planning frameworks by highlighting the cumulative environmental impacts of the development of the built environment. By drawing on the idea of planning support systems, SAMFA also aims to provide a cross-disciplinary, integrative medium for involving stakeholders in strategies for a sustainable built environment and, as such, would help illustrate the sustainability consequences of alternative The pilot run of the model in Kildare has shown that the model can be successfully calibrated and applied to develop alternative material flows and energy-use scenarios at the ED level. This has been demonstrated through the development of an integrated and a business-as-usual scenario, with the former integrating a range of potential material efficiency and energysaving policy options and the latter replicating conditions that best describe the current trend. Their comparison shows that the former is better than the latter in terms of both material and energy use. This report also identifies a number of potential areas of future research and areas of broader application. This includes improving the accuracy of the SAMFA model (e.g. by establishing actual life expectancy of buildings in the Irish context through field surveys) and the extension of the model to other Irish counties. This would establish SAMFA as a valuable predicting and monitoring tool that is capable of integrating national and local spatial planning objectives with actual environmental impacts. Furthermore, should the model prove successful at this level, it then has the potential to transfer the modelling approach to other areas of the built environment, such as commercial development and other key contributors of greenhouse emissions. The ultimate aim is to develop a meta-model for predicting the consequences of consumption patterns at the local scale. This therefore offers the possibility of creating critical links between socio technical systems with the most important challenge of all the limitations of the biophysical environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production. © 2012 Future Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What role do organizations play in writing history? In this paper, I address the part played by organizations in the enactment of large-scale violence, and focus on the ways in which the resulting histories come to be written. Drawing on the case of Ireland's industrial schools, I demonstrate how such accounts can act to serve the interests of those in power, effectively silencing and marginalizing weaker people. A theoretical lens that draws on ideas from Walter Benjamin and Judith Butler is helpful in understanding this; the concept of 'affective disruption' enables an exploration of how people's experiences of organizational violence can be reclaimed from the past, and protected in a continuous remembrance. Overall, this paper contributes a new perspective on the writing of organizational histories, particularly in relation to the enactment of violence. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is renewed interest in the state's role in the economic sphere but a lack of research on the viability and employment effects of alternative economic models, in particular from a ‘liberal market economy’ perspective. This article addresses this gap in the human resource management literature by undertaking a detailed case study of industrial policy in the Irish pharmaceutical sector. The proactive and resource-intensive industrial policy adopted by the Irish government and development agencies is found to have underpinned a significant strategic upgrading in this sector of the Irish economy. In turn this has facilitated the growth of high-wage, high-skill jobs. The findings highlight the potential for an active industrial policy to promote employment upgrading in liberal market economies.