30 resultados para indium arsenide
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A range of ionic liquids was prepared by mixing 1-alkyl-3-methylimidazolium chloride with gallium(III) chloride or indium(III) chloride in various ratios, producing both acidic and basic compositions. Their speciation was investigated using Ga-71 NMR or In-115 NMR spectroscopy, as well as extended X-ray absorption fine structure. Polynuclear Lewis acidic anions, [MxCl3x+1](-), were found in chlorogallate(III) ionic liquids, but not in chloroindate(III) systems.
Resumo:
The electronic band structure of vacuum cleaved single-crystal indium selenide has been investigated by X-ray and ultraviolet photoelectron spectroscopy. The valence band consists of three well separated groups, one derived from the Se 4s levels, and two derived from p-like wavefunctions. The band structure and valence band density of states has been calculated using a tight-binding single-layer approximation and all the major features in the experimental spectra are well accounted for. The spin-orbit splitting and electron loss structure associated with the In 4d core level is also reported.
Resumo:
The band structures of the group III-VI monochalcogenides GaSe and InSe have been calculated using a semi-empirical tight-binding method in a two-dimensional approximation. Many of the discrepancies between experimental work and previous calculations for GaSe have been resolved. The results for InSe appear for the first time.
Resumo:
Photoresponse of n-type indium-doped ZnO and a p-type polymer (PEDOT:PSS) heterojunction devices are studied, juxtaposed with the photoluminescence of the In-ZnO samples. In addition to the expected photoresponse in the ultraviolet, the heterojunctions exhibit significant photoresponse to the visible (532 nm). However, neither the doped ZnO nor PEDOT: PSS individually show any photoresponse to visible light. The sub-bandgap photoresponse of the heterojunction originates from visible photon mediated e-h generation between the In-ZnO valence band and localized states lying within the band gap. Though increased doping of In-ZnO has limited effect on the photoluminescence, it significantly diminishes the photoresponse. The study indicates that optimally doped devices are promising for the detection of wavelengths in selected windows in the visible. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704655]
Resumo:
Microcrystalline indium(III) selenide was prepared from a diphenyl diselenide precursor and a range of chloroindate(III) ionic liquids via a microwave-assisted ionothermal route; this is the first report on the use of either microwave irradiation or ionic liquids to prepare this material. The influence of the reaction temperature, dilution with a spectator ionic liquid and variation of the cation and the anion of the ionic liquid on the product morphology and composition were investigated. This resulted in a time-efficient and facile one-pot reaction to produce microcrystalline indium(III) selenide. The product formation in the ionic liquids has been monitored using Raman spectroscopy. The products have been characterised using PXRD, SEM and EDX. Advantages of this new route, such as the ease of solubilisation of all reactants into one phase at high concentration, the negligible vapour pressure irrespective of the reaction temperature, very fast reaction times, ease of potential scale-up and reproducibility are discussed.
Resumo:
The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future.
Resumo:
The comparison of three ionic liquid-mediated catalytic processes for the benzoylation of anisole with benzoic anhydride is presented. A detailed understanding of the mechanism by which the zeolite and metal triflate reactions in bis{trifluoromethanesulfonyl}imide-based ionic liquids has been reported previously, and these routes are considered together with an indium chloride-based ionic liquid system. Solvent extraction and vacuum/steam distillation have been assessed as possible workup procedures, and an overall preliminary economic evaluation of each overall process is reported. Although the predominant activity is associated with the in situ formation of a homogeneous acid catalyst, the low cost and facile separation of the zeolite-catalysed process leads to this route being the most economically viable overall option. The results of a continuous flow miniplant based on the zeolite catalyst are also presented and compared with the reaction using a small plug How reactor.
Resumo:
A structurally pure, near-infrared emissive Nd-(5,7-dichloro-8-hydroxyquinoline)4 tetrakis complex has been synthesized. When incorporated as a dopant in the blue emissive, hole conducting polymer poly(N-vinylcarbazole), PVK, sensitized neodymium ion emission was observed following photo-excitation of the polymer host. OLED devices were fabricated by spin-casting layers of the doped polymer onto glass/indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. An external quantum efficiency of 1 x 10(-3)% and a near-infrared irradiance of 2.0 nW/mm(2) at 25 mA/mm(2) and 20 V was achieved using glass/ITO/PEDOT/ PVK:Nd-(5,7-dichloro-8-hydroxyquinoline)(4)/Ca/Al devices. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Organic light emitting diode devices employing organometallic Nd(9-hydroxyphenalen-1-one)(3) complexes as near infrared emissive dopants dispersed within poly(N-vinylcarbazole) (PVK) host matrices have been fabricated by spin-casting layers of the doped polymer onto glass/indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Room temperature electroluminescence, centered at similar to 1065 nm. was observed from devices top contacted by evaporated aluminum or calcium metal cathodes and was assigned to transitions between the F-4(3/2) -> I-4(11/2) levels of the Nd3+ ions. In particular, a near infrared irradiance of 8.5 nW/mm(2) and an external quantum efficiency of 0.007% was achieved using glass/ITO/PEDOT/PVK:Nd(9-hydroxyphenalen-1-one)(3)/Ca/Al devices. (c) 2005 Elsevier B.V. All rights reserved.
Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films
Resumo:
Narrow bandwidth red electroluminescence from OLED devices fabricated using a simple solution-based approach is demonstrated. A spin-casting method is employed to fabricate organic light emitting diode (OLED) devices comprising a poly(N-vinylcarbazole) (PVK) host matrix doped with a europium beta-diketonate complex, Eu(dbM)(3)(Phen) (dibenzoylmethanate, dbm; 1,10-phenanthroline, Phen) on glass/ indium tin oxide (ITO)/3,4-polyethylene-dioxythiophene-polystyrene sulfonate (PEDOT) substrates. Saturated red europium ion emission, based on the (5)Do ->F-7(2) transition, is centered at a wavelength of 612 nm with a full width at half maximum of 3.5 rim. A maximum external quantum efficiency of 6.3 x 10(-2) cd/A (3.1 X 10(-2)%) and a maximum luminance of 130 cd/M-2 at 400 mA/cm(2) and 25 V is measured for ITO/PEDOT/PVK:Eu(dbM)3(Phen)/Ca/Al devices. This measured output luminance is comparable to that of devices fabricated using more sophisticated small molecule evaporation techniques. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
A range of chloroindate(III) ionic liquid systems was prepared by mixing of 1-alkyl-3-methylimidazolium chloride with indium(III) chloride in various ratios, expressed as the mol fraction of indium(III) chloride, chi(InCl3). For chi(InCl3) 0.50, the products were biphasic (suspensions of a solid in an ionic liquid). Speciation of these chloroindate(III) systems was carried out using a wide range of techniques: differential scanning calorimetry (DSC), polarised optical microscopy (POM), liquid-state and solid-state In-115 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). Ionic liquids prepared using an excess of the organic chloride (chi(InCl3) 0.5) contained indium(III) chloride powder suspended in a neutral tetrachloroindate ionic liquid.