12 resultados para gas pulse

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the influence of non-ideal boundary and initial conditions (BIC) of a temporal analysis of products (TAP) reactor model on the data (observed exit flux) analysis. The general theory of multi-response state-defining experiments for a multi-zone TAP reactor is extended and applied to model several alternative boundary and initial conditions proposed in the literature. The method used is based on the Laplace transform and the transfer matrix formalism for multi-response experiments. Two non-idealities are studied: (1) the inlet pulse not being narrow enough (gas pulse not entering the reactor in Dirac delta function shape) and (2) the outlet non-ideality due to imperfect vacuum. The effect of these non-idealities is analyzed to the first and second order of approximation. The corresponding corrections were obtained and discussed in detail. It was found that they are negligible. Therefore, the model with ideal boundary conditions is proven to be completely adequate to the description and interpretation of transport-reaction data obtained with TAP-2 reactors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The temporal analysis of products (TAP) technique was successfully applied for the first time to investigate the reverse water-gas shift (RWGS) reaction over a 2% Pt/CeO2 catalyst. The adsorption/desorption rate constants for CO2 and H-2 were determined in separate TAP pulse-response experiments, and the number of H-containing exchangeable species was determined using D-2 multipulse TAP experiments. This number is similar to the amount of active sites observed in previous SSITKA experiments. The CO production in the RWGS reaction was studied in a TAP experiment using separate (sequential) and simultaneous pulsing Of CO2 and H-2. A small yield of CO was observed when CO2 was pulsed alone over the reduced catalyst, whereas a much higher CO yield was observed when CO2 and H-2 were pulsed consecutively. The maximum CO yield was observed when the CO2 pulse was followed by a H-2 pulse with only a short (1 s) delay. Based on these findings, we conclude that an associative reaction mechanism dominates the RWGS reaction under these experimental conditions. The rate constants for several elementary steps can be determined from the TAP data. In addition, using a difference in the time scale of the separate reaction steps identified in the TAP experiments, it is possible to distinguish a number of possible reaction pathways. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of one-dimensional simulation codes within engine modelling applications has proved to be a useful tool in evaluating unsteady gas flow through elements in the exhaust system. This paper reports on an experimental and theoretical investigation into the behaviour of unsteady gas flow through catalyst substrate elements. A one-dimensional (1-D) catalyst model has been incorporated into a 1-D simulation code to predict this behaviour.

Experimental data was acquired using a ‘single pulse’ test rig. Substrate samples were tested under ambient conditions in order to investigate a range of regimes experienced by the catalyst during operation. This allowed reflection and transmission characteristics to be quantified in relation to both geometric and physical properties of substrate elements. Correlation between measured and predicted results is demonstrably good and the model provides an effective analysis tool for evaluating unsteady gas flow through different catalytic converter designs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slowly evolving, regularly spaced patterns have been observed in proton projection images of plasma channels drilled by intense (greater than or similar to 10(19) W cm(-2)) short (similar to 1 ps) laser pulses propagating in an ionized gas jet. The nature and geometry of the electromagnetic fields generating such patterns have been inferred by simulating the laser-plasma interaction and the following plasma evolution with a two-dimensional particle-in-cell code and the probe proton deflections by particle tracing. The analysis suggests the formation of rows of magnetized soliton remnants, with a quasistatic magnetic field associated with vortexlike electron currents resembling those of magnetic vortices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate control of the relative phase of multiple distinct sources of radiation produced by high harmonic generation is of central importance in the continued development of coherent extreme UV (XUV) and attosecond sources. Here, we present a novel approach which allows extremely accurate phase control between multiple sources of high harmonic radiation generated within the Rayleigh range of a single-femtosecond laser pulse using a dualgas, multi-jet array. Fully ionized hydrogen acts as a purely passive medium and allows highly accurate control of the relative phase between each harmonic source. Consequently, this method allows quantum path selection and rapid signal growth via the full coherent superposition of multiple HHG sources (the so-called quasi-phase-matching). Numerical simulations elucidate the complex interplay between the distinct quantum paths observed in our proof-of-principle experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently using KrF high power laser (248 nm; 350 fs; 5.0x10(16) W/cm(2)) in the Rutherford Appleton Laboratory an experimental search for recombination extreme ultraviolet (XUV) laser action in Li-like nitrogen ions was performed. To understand the experimental results of line emission at 24.7 nm in the 3d(5/2)-2p(3/2) transition of the Li-like nitrogen ion a simulation was undertaken using a one-dimensional Lagrangian hydrodynamic code. From the simulation results, we confirmed that there was nonlinear dependence of spectral line emission on the gas density which was well matched to the experimental results. Only a six times increase of the 24.7 nm emission intensity was obtained when the plasma length was increased 1000 times from 1 mu m as an optically thin case to 1 mm. Also, the spatial profile of the electron density and temperature was obtained and the electron temperature was about 40-50 eV which was too high for the optical field ionization x-ray lasing. We could not find evidence of x-ray laser gain. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser induced acoustic desorption (LIAD) has been used for the first time to study the parent ion production and fragmentation mechanisms of a biological molecule in an intense femtosecond (fs) laser field. The photoacoustic shock wave generated in the analyte substrate (thin Ta foil) has been simulated using the hydrodynamic HYADES code, and the full LIAD process has been experimentally characterised as a function of the desorption UV-laser pulse parameters. Observed neutral plumes of densities > 10(9) cm(-3) which are free from solvent or matrix contamination demonstrate the suitability and potential of the source for studying ultrafast dynamics in the gas phase using fs laser pulses. Results obtained with phenylalanine show that through manipulation of fundamental femtosecond laser parameters (such as pulse length, intensity and wavelength), energy deposition within the molecule can be controlled to allow enhancement of parent ion production or generation of characteristic fragmentation patterns. In particular by reducing the pulse length to a timescale equivalent to the fastest vibrational periods in the molecule, we demonstrate how fragmentation of the molecule can be minimised whilst maintaining a high ionisation efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new experimental technique for femtosecond (fs) pulse studies of gas phase biomolecules is reported. Using Laser-Induced Acoustic Desorption (LIAD) to produce a plume of neutral molecules, a time-delayed fs pulse is employed for ionisation/fragmentation, with subsequent products extracted and mass analysed electrostatically. By varying critical laser pulse parameters, this technique can be used to implement control over molecular fragmentation for a range of small biomolecules, with specific studies of amino acids demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manuscript describes the application and further development of the TAP technique in kinetic characterization of heterogeneous catalysis. The major application of TAP systems is to study mechanisms, kinetics and transport phenomena in heterogeneous catalysis, all of which is made possible by the sub-millisecond time resolution. Furthermore, the kinetic information obtained can be used to gain an insight into the mechanism occurring over the catalyst system. This is advantageous as heterogeneous catalysts with an improved efficiency can be developed as a result. TAP kinetic studies are carried out at low pressure (~1x10-7 mbar) and TAP pulses are sufficiently small (1013-1015 molecules) so as to maintain this low pressure. The use of a small number of molecules in comparison to the total number of active sites means the state of the catalyst remains relatively unchanged. The use of the low intensity pulses also makes the pressure gradient negligible and so allows the TAP reactor system to operate in the Knudsen Diffusion regime, where gas-gas reactions are eliminated. Hence only gas-catalyst reactions are investigated and, by the use of moment analysis of observed exit flow, rate constants of elementary steps of the reaction can be obtained.

In this manuscript, two attempts to further the TAP technique are reported. Firstly, the work undertaken at QUB to attempt to control the number of molecules of condensable reagents that can be pulsed during a TAP pulse experiment is disclosed. Secondly, a collaborative project with SAI Ltd Manchester is discussed in a separate chapter, where technical details and validation of a customised time of flight mass spectrometer (ToF MS) for the QUB TAP-1 system are reported. A collaborative project with Cardiff Catalysis Institute focusing on the study of CO oxidation over hopcalite catalysts is also reported. The analysis of the experimental results has provided an insight into the possible mechanism of the oxidation of CO over these catalysts. A correction function has also been derived which accounts for the adsorption of reactant molecules over inert materials that are used for the reactor packing in TAP experiments. This function was then applied to the selective reduction of O2 in a H2 rich ethene feed, so that more accurate TAP moment based analysis could be conducted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 0.5 K to 7.2 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key issue in pulse detonation engine development is better understanding of the detonation structure and its propagation mechanism. Thus, in the present work the turbulent structure of an irregular detonation is studied through very high resolution numerical simulations of 600 points per half reaction length. The aim is to explore the nature of the transverse waves during the collision and reflection processes of the triple point with the channel walls. Consequently the formation and consumption mechanism of unreacted gas pockets is studied. Results show that the triple point and the transverse wave collide simultaneously with the wall. The strong transverse wave switches from a primary triple point before collision to a new one after reflection. Due to simultaneous interaction of the triple point and the transverse wave with the wall in the second half of the detonation cell, a larger high-pressurised region appears on the wall. During the reflection the reaction zone detaches from the shock front and produces a pocket of unburned gas. Three mechanisms found to be of significance in the re-initiation mechanism of detonation at the end of the detonation cell; i: energy resealed via consumption of unburned pockets by turbulent mixing ii: compression waves arise due to collision of the triple point on the wall which helps the shock to jump abruptly to an overdriven detonation iii: drastic growth of the Richtmyer–Meshkov instability causing a part of the front to accelerate with respect to the neighbouring portions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plasma gas bubble-in-liquid method for high production of selectable reactive species using a nanosecond pulse generator has been developed. The gas of choice is fed through a hollow needle in a point-to-plate bubble discharge, enabling improved selection of reactive species. The increased interface reactions, between the gas-plasma and water through bubbles, give higher productivity. H2O2 was the predominant species produced using Ar plasma, while predominantly  and NO2 were generated using air plasma, in good agreement with the observed emission spectra. This method has nearly 100% selectivity for H2O2, with seven times higher production, and 92% selectivity for , with nearly twice the production, compared with a plasma above the water.