74 resultados para fur texel
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Paradigmatic analysis reveals that these two composers developed distinct responses to creating narrative in dance music
Resumo:
Let H be a (real or complex) Hilbert space. Using spectral theory and properties of the Schatten–Von Neumann operators, we prove that every symmetric tensor of unit norm in HoH is an infinite absolute convex combination of points of the form xox with x in the unit sphere of the Hilbert space. We use this to obtain explicit characterizations of the smooth points of the unit ball of HoH .
Resumo:
Biotic interactions such as predation and competition can influence aquatic communities at small spatial scales, but they are expected to be overridden by environmental factors at large scales. The continuing threat to freshwater biodiversity of biological invasions indicates that biotic factors do, however, have important structuring roles. In Irish rivers, the native amphipod Gammarus duebeni celticus has become locally extinct, ostensibly through differential predation by the more aggressive and introduced G. pulex. This mechanism explains impacts of G. pulex at within-river spatial scales on native macroinvertebrate community diversity, including declines in ephemeropterans, plecopterans, dipterans and oligochaetes. To determine if these patterns are predictable at larger spatial scales, we assessed patterns in native macroinvertebrate communities across river sites of the Erne catchment in 1998 and 1999, in conjunction with the distribution of G. pulex and G. d. celticus. In both years, G. pulex dominated invaded sites, whereas G. d. celticus occurred at low abundance in uninvaded sites. In both years, invaded sites had lower diversity and fewer pollution sensitive invertebrate species than un-invaded sites. Community ordination in 1998 showed that invaded sites had higher conductivity, smaller substrate particle size and comprised a lower proportion of pollution sensitive taxa including Ephemeroptera and Plecoptera. In contrast, in 1999, conductivity was the only variable explaining site ordination along axis 1, but was unable to separate sites with respect to invasion status. A second explanatory axis separated sites with respect to invasion status, with invaded sites having fewer taxa, including lower abundance of ephemeropterans, dipterans and plecopterans. Laboratory experiments examined the potential role of differential predation between the two Gammarus species in explaining these taxon specific patterns in the field. Survival of the ephemeropterans, Ephemerella ignita and Ecdyonurus venosus and the isopod, Asellus aquaticus, was lower when interacting with G. pulex than with G. d. celticus. This study indicates that G. putex may alter invertebrate community structure at scales beyond those detected within individual rivers. However, effects may be influenced by gradients in physico-chemistry, which may be temporal or depend on catchment characteristics. Invasions by amphipods have increased globally, thus comprehensive assessments of their impacts and of other aquatic invaders, may only be apparent when studies are conducted at a range of spatio-temporal scales.
Resumo:
Studies of biological invasions predominantly stress threats to biodiversity through the elimination and replacement of native species. However, we must realise that resident communities may often be capable of integrating invaders, leading to patterns of coexistence. Within the past ninety years, three freshwater amphipod species have invaded Northern Ireland the North American Gammarus tigrinus and Crangonyx pseudogracilis, plus the European G. pulex. These species have come into contact with the ubiquitous native species, G. duebeni celticus. This study examined spatiotemporal patterns of stability of single and mixed species assemblages in an invaded lake. Lough Beg and its associated rivers were surveyed in summer 1994 and winter 1995, and a selection of stations re-sampled in summer one and five years later. All possible combinations of the four amphipod species were found. Although species presence/absence was stable between seasons at the scale of the whole lough, it was extremely fluid at the scale of individual sites, 82% of which changed in species composition between seasons. Overall mean amphipod abundance was similar across 5 distinguishable habitat types, but there were differences in species compositions among these habitats. In addition, although co-occurrences of Gammarus species did not differ from random, there was a strong negative association between Gammarus spp. and C. pseudogracilis. This latter pattern was at least in part generated by the better tolerance of C. pseudogracilis to lower water quality. A review of previous studies indicates that the exclusion of C. pseudogracilis by Gammarus species from high water quality areas is likely to involve biotic interaction. Thus, overall, co-existence of the four species, which is clearly dynamic and scale-dependent, appears promoted by spatial and temporal habitat heterogeneity. However, biotic interactions may also play a role in local exclusions. Since the three introduced species have not eliminated the native species, and each successive invasion has not replaced the previous invader, this study demonstrates that freshwater invaders may integrate with native communities leading to coexistence and increased species diversity.
Resumo:
Populations of Gammarus duebeni celticus, previously the only amphipod species resident in the rivers of the Lough Neagh catchment, N. Ireland, have been subjected to invasion by G. pulex from the British mainland. Numerous previous studies have investigated the potential behavioural mechanisms, principally differential mutual predation, underlying the replacement of G. d. celticus by G. pulex in Irish waters, and the mutually exclusive distributions of these species in Britain and mainland Europe. However, the relative degree of influence of abiotic versus biotic factors in structuring these amphipod communities remains unresolved. This study used principal component analysis (PCA) to distinguish physico-chemical parameters that have significant roles in determining the current distribution of G. pulex relative to G. d. celticus in L. Neagh rivers. We show that the original domination of rivers by the native G. d, celticus has changed radically, with many sites in several rivers containing either both species or only G. pulex. G. pulex was more abundant than the G. d. celticus in sites with low dissolved oxygen levels. This was reflected in the macroinvertebrate assemblages associated with G. pulex in these sites, which tended to be those tolerant of low biological water quality. The present study thus emphasizes the importance of the habitat template, particularly water quality, for Gammarus spp. interactions. If rivers become increasingly stressed by organic pollution, it is probable the range expansion of G. pulex will continue. Because these two species are not ecological equivalents, the outcomes of G. pulex incursions into G. d. celticus sites may ultimately depend on the prevailing physico-chemical regimes in each site.
Resumo:
Background: Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki) are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation.
Results: We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis) that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation.
Conclusion: Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations.
Resumo:
Economical breeding is important to obtain maximum gain from the breeding in the animal sector. The economic loss has to be eliminated or should be minimized. The liver fluke, Fasciola hepatica, present mostly in sheep and dairy cattle affect the yield of animals and even cause their death. To eliminate or minimize the impact of these parasites on the animals, it is important to understand the genetic diversity of the liver fluke populations and the relationship between parasite and host at regional bases. This research was carried out to determine diversity by sequence analysis of the mitochondrial ND1 gene and ribosomal ITS1 region.
Resumo:
Colourless crystals of [Hg-2(Mmt)(Dmt)(2)](NO3)(H2O) were obtained from a reaction of mercuric nitrate with nionomethyl- and dimethyl-1,2.4-triazolate (Mmt(-) and Dmt(-), respectively). In the crystal structure (monoclinic, C2/c (no. 15), a = 2579.4(4) b = 1231.1(2), c = 1634.8(2) pm, beta = 128.32(1)degrees V = 4073.3(11).10(6).pm(3): Z = 8, R-1 [I-0 > 2 sigma(I-0)]: 0.0355), half of the mercuric ions are essentially two-coordinate (Hg-N: 210-215 pm), the other half are tetrahedrally surrounded by N-donor atoms (Hg-N: 221, 225 pm) of the Mmt(-) and Dmt(-) anions. These three-N ligands construct a three-dimensional framework.
Resumo:
Single crystals of mercuric bis(N-imino-methyl-formamidate), Hg(Imf)(2), were obtained from aqueous solutions of 1,2,4-triazole and Hg(NO3)(2)center dot 2H(2)O. The crystal structure [monoclinic, P2(1)/c (no. 14), a = 499.6(2), b = 1051.2(4), c = 711.1(3) pm, beta = 117.55(1)degrees, Z = 2, R, for 890 reflections with I-0 > 2 sigma(I-0): 0.0369] contains linear centrosymmetric Hg(Imf)(2) molecules with Hg-N distances of only 203.5(7)pm. Two plus two intra- and intermolecular nitrogen atoms add to an effective coordination number of 6.
Resumo:
Colourless single crystals of [Ag-3(Dat)(2)](NO3)(3) were obtained from a reaction of silver(l) nitrate and 3,5-dimethyl-4-amino-1,2,4-triazole (Dat). In the crystal structure (orthorhombic, Fdd2, Z = 8, a = 1100.1(2), b = 3500.3(2), c = 1015.4(3) pm, R, = 0.0434) there are two crystallographically non-equivalent silver sites in a one (Ag1) to two ratio (Ag2). Both resemble linear N-Ag-N coordination although angles are 163 degrees and 144 degrees, respectively Each Dat ligand coordinates with the two ring nitrogen atoms at 216 to 219 pm and with one amino-nitrogen atom at 229 pro. According to the composition [Ag-3(Dat)(2)](3+) = [(Dat)Ag-3/2](3+), a polymeric structure is built with all Ag+ ions bridging.
Resumo:
Five new compounds in the system (NH4)Cl/HgCl2/H2O have been obtained as colourless single crystals, (NH4)Hg5Cl11, (NH4)(2)Hg3Cl8(H2O), (NH4)(4)Hg3Cl10(H2O)(2), (NH4)(2)HgCl4(H2O), and (NH4)(10)Hg3Cl16. In all of these, as in HgCl2 itself, (almost) linear HgCl2 molecules persist with Hg-Cl distances varying from 229 to 236 pm. In (NH4)(10)Hg3Cl16 there are also tetrahedra [HgCl4] with d(Hg-Cl) = 247 pm present. If larger Hg-Cl distances (of up to 340 pm) are considered as belonging to the coordination sphere of Hg-II, the structures may be described as consisting of isolated octahedra and tetrahedra as in (NH4)(10)Hg3Cl16, edge-connected chains as in (NH4)(2)HgCl4(H2O), edge-connected chains and layers of octahedra as in (NH4)(4)Hg3Cl10(H2O)(2), corrugated layers of edge-connected octahedra as in (NH4)(2)Hg3Cl8(H2O), and, finally, a three-dimensional network of connected six- and seven-coordinate Hg-Cl polyhedra as in (NH4)Hg5Cl11. The water molecules are never attached to Hg-II. The (NH4)(+) cations, and sometimes Cl- anions, play a role for electroneutrality only.
Resumo:
The new ammonium iodomercurates(II), (NH4)(7)[HgI4](2)[Hg2I7](H2O) (1) and (NH4)(3)[Hg2I7] (2) contain isolated tetrahedra and vertex-sharing double tetrahedra as the anions. The crystal structures were determined from single-crystal X-ray diffraction data: 1: orthorhombic, Pnma (no. 62), a = 2175.9(2), b = 1781.8(2), c = 1256.2(2) pm, Z = 4. R-1 [I-0 > 2 sigma(I-0)] = 0.0520; 2: monoclinic, P2(1)/c (no. 14), a = 1259.0(2), b = 773.2(1), c = 2172.4(3) pm, beta = 101.18(2)degrees, Z = 4, R, [I-0 > 2 sigma(I-0)] = 0.0308.
Resumo:
The crystal structures of two ammonium bromomercurates(II), (NH4)Hg5Br11 (1) and (NH4)(4)HgBr6 (2), were determined from single-crystal X-ray diffraction data: 1: monoclinic, C2/m (no. 12), a = 1231.3(3), b = 1517.4(3), c = 680.4(2) pm, beta = 118.78(2)degrees, Z = 2, R-1 = 0.0391 for I-0 > 2 sigma(I-0); 2: tetragonal, P4/mnc (no. 128), a = 925.6(1), c = 887.2(1) pm, Z = 2, R-1 = 0.0370 for I(0 >)2a(I-0). According to (NH4)Br[HgBr2](5) and (NH4)(4)Br-4[HgBr2] they both contain [Br-Hg-Br] molecules. Additional bromide ions are only loosely attached to the mercury atoms, however involved in (NH4)(+)-Br- bonding.