33 resultados para folded cascode

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we report on the significance of gate-source/drain extension region (also known as underlap design) optimization in double gate (DG) FETs to improve the performance of an operational transconductance amplifier (OTA). It is demonstrated that high values of intrinsic voltage gain (A(VO_OTA)) > 55 dB and unity gain frequency (f(T_OTA)) similar to 57 GHz in a folded cascode OTA can be achieved with gate-underlap channel design in 60 nm DG MOSFETs. These values correspond to 15 dB improvement in A(VO_OTA) and three fold enhancement in f(T_OTA) over a conventional non-underlap design. OTA performance based on underlap single gate SOI MOSFETs realized in ultra-thin body (UTB) and ultra-thin body BOX (UTBB) technologies is also evaluated. A(VO_OTA) values exhibited by a DG MOSFET-based OTA are 1.3-1.6 times higher as compared to a conventional UTB/UTBB single gate OTA. f(T_OTA) values for DG OTA are 10 GHz higher for UTB OTAs whereas a twofold improvement is observed with respect to UTBB OTAs. The simultaneous improvement in A(VO_OTA) and f(T_OTA) highlights the usefulness of underlap channel architecture in improving gain-bandwidth trade-off in analog circuit design. Underlap channel OTAs demonstrate high degree of tolerance to misalignment/oversize between front and back gates without compromising the performance, thus relaxing crucial process/technology-dependent parameters to achieve 'idealized' DG MOSFETs. Results show that underlap OTAs designed with a spacer-to-straggle (s/sigma) ratio of 3.2 and operated below a bias current (IBIAS) of 80 mu A demonstrate optimum performance. The present work provides new opportunities for realizing future ultra-wide band OTA design with underlap DG MOSFETs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin secretions contain a broad spectrum of biologically active compounds, particularly antimicrobial peptides, which are considered to constitute a first line of defence against bacterial infection. Here we describe the identification of two prototype peptides representing a novel structural class of antimicrobial peptide from the skin secretion of the oriental broad-folded frog, Hylarana latouchii. Named hylaranin-L1 (GVLSAFKNALPGIMKIIVamide) and hylaranin-L2 (GVLSVIKNALPGIMRFIAamide), both peptides consist of 18 amino acid residues, are C-terminally amidated and are of unique primary structures. Their primary structures were initially deduced by MS/MS fragmentation sequencing from reverse-phase HPLC fractions of skin secretion that demonstrated antimicrobial activity. Subsequently, their precursor-encoding cDNAs were cloned from a skin secretion-derived cDNA library and their primary structures were confirmed unequivocally. Synthetic replicates of both peptides exhibited broad-spectrum antimicrobial activity with mean inhibitory concentrations (MICs) of 34 µM against Gram-negative Escherichia coli, 4.3 µM against Gram-positive Staphylococcus aureus and 4–9 µM against the yeast, Candida albicans. Both peptides exhibited little haemolytic activity (<6 %) at the MICs for S. aureus and C. albicans. Amphibian skin secretions thus continue to provide novel antimicrobial peptide structures that may prove to be lead compounds in the design of new classes of anti-infection therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report a novel heptadecapeptide (LIGGCWTKSIPPKPCLV) of the pLR/ranacyclin family, named pLR-HL, whose structure was deduced from its biosynthetic precursor-encoding cDNA cloned from the skin secretion-derived cDNA library of the broad-folded frog, Hylarana latouchii, by employing a "shotgun" cloning technique. It contains a disulphide loop between Cys5 and Cys15 which is consistent with Bowman-Birk-type protease inhibitors. The primary structure of pLR-HL deduced from the cDNA sequence was confirmed by fractionating the skin secretion using reverse phase HPLC and subsequent analysis using MALDI-TOF mass spectrometry and LC/MS/MS fragmentation sequencing. On the basis of the establishment of unequivocal amino acid sequence, a synthetic replicate was synthesised by solid-phase Fmoc chemistry, and it displayed a moderately potent trypsin inhibition with a Ki of 143 nM. The substitution of Lys-8 by Phe (Phe8 -pLR-HL) resulted in abolition of trypsin inhibition but generation of modest inhibition on chymotrypsin with a Ki of 2.141 μM. Additionally, both the disulphide loops of pLR-HL and Phe8 -pLR-HL were synthesised and tested. Both of the catalytic loops retained similar inhibitory potencies towards trypsin or chymotrypsin in comparison with the original intact molecules. Thus, the replacement of reactive site residues could alter the specificity of these protease inhibitors, while the canonical reactive loop alone can independently constitute biologically-active moiety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HSP70 chaperones mediate protein folding by ATP-dependent interaction with short linear peptide segments that are exposed on unfolded proteins. The mode of action of the Escherichia coli homolog DnaK is representative of all HSP70 chaperones, including the endoplasmic reticulum variant BiP/GRP78. DnaK has been shown to be effective in assisting refolding of a wide variety of prokaryotic and eukaryotic proteins, including the -helical homodimeric secretory cytokine interferon- (IFN-). We screened solid-phase peptide libraries from human and mouse IFN- to identify DnaK-binding sites. Conserved DnaK-binding sites were identified in the N-terminal half of helix B and in the C-terminal half of helix C, both of which are located at the IFN- dimer interface. Soluble peptides derived from helices B and C bound DnaK with high affinity in competition assays. No DnaK-binding sites were found in the loops connecting the -helices. The helix C DnaK-binding site appears to be conserved in most members of the superfamily of interleukin (IL)-10-related cytokines that comprises, apart from IL-10 and IFN-, a series of recently discovered small secretory proteins, including IL-19, IL-20, IL-22/IL-TIF, IL-24/MDA-7 (melanoma differentiation-associated gene), IL-26/AK155, and a number of viral IL-10 homologs. These cytokines belong to a relatively small group of homodimeric proteins with highly interdigitated interfaces that exhibit the strongly hydrophobic character of the interior core of a single-chain folded domain. We propose that binding of DnaK to helix C in the superfamily of IL-10-related cytokines may constitute the hallmark of a novel conserved regulatory mechanism in which HSP70-like chaperones assist in the formation of a hydrophobic dimeric "folding" interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recombinant measles virus (MV) expressing red fluorescent protein (MVDsRed1) was used to produce a persistently infected cell line (piNT2-MVDsRed1) from human neural precursor (NT2) cells. A similar cell line (piNT2-MVeGFP) was generated using a virus that expresses enhanced green fluorescent protein. Intracytoplasmic inclusions containing the viral nucleocapsid protein were evident in all cells and viral glycoproteins were present at the cell surface. Nevertheless, the cells did not release infectious virus nor did they fuse to generate syncytia. Uninfected NT2 cells express the MV receptor CD46 uniformly over their surface, whereas CD46 was present in cell surface aggregates in the piNT2 cells. There was no decrease in the overall amount of CD46 in piNT2 compared to NT2 cells. Cell-to-cell fusion was observed when piNT2 cells were overlaid onto confluent monolayers of MV receptor-positive cells, indicating that the viral glycoproteins were correctly folded and processed. Infectious virus was released from the underlying cells, indicating that persistence was not due to gross mutations in the virus genome. Persistently infected cells were superinfected with MV or canine distemper virus and cytopathic effects were not observed. However, mumps virus could readily infect the cells, indicating that superinfection immunity is not caused by general soluble antiviral factors. As MVeGFP and MVDsRed1 are antigenically indistinguishable but phenotypically distinct it was possible to use them to measure the degree of superinfection immunity in the absence of any cytopathic effect. Only small numbers of non-fusing green fluorescent piNT2-MVDsRed1 cells (1 : 300 000) were identified in which superinfecting MVeGFP entered, replicated and expressed its genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A generic architecture for implementing a QR array processor in silicon is presented. This improves on previous research by considerably simplifying the derivation of timing schedules for a QR system implemented as a folded linear array, where account has to be taken of processor cell latency and timing at the detailed circuit level. The architecture and scheduling derived have been used to create a generator for the rapid design of System-on-a-Chip (SoC) cores for QR decomposition. This is demonstrated through the design of a single-chip architecture for implementing an adaptive beamformer for radar applications. Published as IEEE Trans Circuits and Systems Part II, Analog and Digital Signal Processing, April 2003 NOT Express Briefs. Parts 1 and II of Journal reorganised since then into Regular Papers and Express briefs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel application-specific instruction set processor (ASIP) for use in the construction of modern signal processing systems is presented. This is a flexible device that can be used in the construction of array processor systems for the real-time implementation of functions such as singular-value decomposition (SVD) and QR decomposition (QRD), as well as other important matrix computations. It uses a coordinate rotation digital computer (CORDIC) module to perform arithmetic operations and several approaches are adopted to achieve high performance including pipelining of the micro-rotations, the use of parallel instructions and a dual-bus architecture. In addition, a novel method for scale factor correction is presented which only needs to be applied once at the end of the computation. This also reduces computation time and enhances performance. Methods are described which allow this processor to be used in reduced dimension (i.e., folded) array processor structures that allow tradeoffs between hardware and performance. The net result is a flexible matrix computational processing element (PE) whose functionality can be changed under program control for use in a wider range of scenarios than previous work. Details are presented of the results of a design study, which considers the application of this decomposition PE architecture in a combined SVD/QRD system and demonstrates that a combination of high performance and efficient silicon implementation are achievable. © 2005 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The venoms of buthid scorpions are known to contain basic, single-chain protein toxins (alpha toxins) consisting of 60–70 amino acid residues that are tightly folded by four disulfide bridges. Here we describe isolation and sequencing of three novel putative alpha toxins (AamH1-3) from the venom of the North African scorpion, Androctonus amoreuxi, and subsequent cloning of their precursor cDNAs from the same sample of venom. This experimental approach can expedite functional genomic analyses of the protein toxins from this group of venomous animals and does not require specimen sacrifice for cloning of protein toxin precursor cDNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility proper-ties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). H-1 NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G(+)/G(-). These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modified abstract version of the Comprehensive Aquatic Simulation Model (CASM) is found to exhibit three types of folded bifurcations due to nutrient loading. The resulting bifurcation diagrams account for nonlinear dynamics such as regime shifts and cyclic changes between clear-water state and turbid state that have actually been observed in real lakes. In particular, pulse-perturbation simulations based on the model presented suggest that temporal behaviors of real lakes after biomanipulations can be explained by pulse-dynamics in complex ecosystems, and that not only the amplitude (manipulated abundance of organisms) but also the phase (timing) is important for restoring lakes by biomanipulation. Ecosystem management in terms of possible irreversible changes in ecosystems induced by regime shifts is also discussed. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA telomeric repeats in mammalian cells are transcribed to guanine-rich RNA sequences, which adopt parallel-stranded G-quadruplexes with a propeller-like fold. The successful crystallization and structure analysis of a bimolecular human telomeric RNA G-quadruplex, folded into the same crystalline environment as an equivalent DNA oligonucleotide sequence, is reported here. The structural basis of the increased stability of RNA telomeric quadruplexes over DNA ones and their preference for parallel topologies is described here. Our findings suggest that the 2'-OH hydroxyl groups in the RNA quadruplex play a significant role in redefining hydration structure in the grooves and the hydrogen bonding networks. The preference for specific nucleotides to populate the C3'-endo sugar pucker domain is accommodated by alterations in the phosphate backbone, which leads to greater stability through enhanced hydrogen bonding networks. Molecular dynamics simulations on the DNA and RNA quadruplexes are consistent with these findings. The computations, based on the native crystal structure, provide an explanation for RNA G-quadruplex ligand binding selectivity for a group of naphthalene diimide ligands as compared to the DNA G-quadruplex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This focused review article discusses in detail, all available high-resolution small molecule ligand/G-quadruplex structural data derived from crystallographic and NMR based techniques, in an attempt to understand key factors in ligand binding and to highlight the biological importance of these complexes. In contrast to duplex DNA, G-quadruplexes are four-stranded nucleic acid structures folded from guanine rich repeat sequences stabilized by the stacking of guanine G-quartets and extensive Watson-Crick/Hoogsteen hydrogen bonding. Thermally stable, these topologies can play a role in telomere regulation and gene expression. The core structures of G-quadruplexes form stable scaffolds while the loops have been shown, by the addition of small molecule ligands, to be sufficiently adaptable to generate new and extended binding platforms for ligands to associate, either by extending G-quartet surfaces or by forming additional planar dinucleotide pairings. Many of these structurally characterised loop rearrangements were totally unexpected opening up new opportunities for the design of selective ligands. However these rearrangements do significantly complicate attempts to rationally design ligands against well defined but unbound topologies, as seen for the series of napthalene diimides complexes. Drawing together previous findings and with the introduction of two new crystallographic quadruplex/ligand structures we aim to expand the understanding of possible structural adaptations available to quadruplexes in the presence of ligands, thereby aiding in the design of new selective entities. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground vehicle tests have been performed to evaluate the performance of a Passive Millimeter Wave (PMMW) imager in reduced visibility conditions and in particular, the ability to detect power lines and cables. A PMMW imager was
compared with Long Wave Infrared (LWIR) and visible imaging cameras. The three sensors were mounted on a Land Rover, together with GPS and digital recording system. All three sensors plus the GPS data were recorded simultaneously in order to provide direct comparisons. The vehicle collected imagery from a number of sites in the vicinity of Malvern, UK, in January, 2008. Imagery was collected both while the vehicle was stationary at specific sites
and while it was moving. Weather conditions during the data collection included clear, drizzle, rain and fog. Imagery was collected during the day, at night, and during dusk/dawn transition periods. The PMMW imager was a prototype which operated at 94 GHz and was based on a conically scanned folded Schmidt camera and the LWIR and visible sensors were commercial off the shelf items.