212 resultados para curricular implementation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of Grid computing technology has opened up an unprecedented opportunity for biologists to share and access data, resources and tools in an integrated environment leading to a greater chance of knowledge discovery. GeneGrid is a Grid computing framework that seamlessly integrates a myriad of heterogeneous resources spanning multiple administrative domains and locations. It provides scientists an integrated environment for the streamlined access of a number of bioinformatics programs and databases through a simple and intuitive interface. It acts as a virtual bioinformatics laboratory by allowing scientists to create, execute and manage workflows that represent bioinformatics experiments. A number of cooperating Grid services interact in an orchestrated manner to provide this functionality. This paper gives insight into the details of the architecture, components and implementation of GeneGrid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In recent years, following the publication of Tomorrow's Doctors, the undergraduate medical curriculum in most UK medical schools has undergone major revision. This has resulted in a significant reduction in the time allocated to the teaching of the basic medical sciences, including anatomy. However, it is not clear what impact these changes have had on medical students' knowledge of surface anatomy. Aim: This study aimed to assess the impact of these curricular changes on medical students' knowledge of surface anatomy. Setting: Medical student intakes for 1995-98 at the Queen's University of Belfast, UK. Methods: The students were invited to complete a simple examination paper testing their knowledge of surface anatomy. Results from the student intake of 1995, which undertook a traditional, 'old' curriculum, were compared with those from the student intakes of 1996-98, which undertook a new, 'systems-based' curriculum. To enhance linear response and enable the use of linear models for analysis, all data were adjusted using probit transformations of the proportion (percentage) of correct answers for each item and each year group. Results: The student intake of 1995 (old curriculum) were more likely to score higher than the students who undertook the new, systems-based curriculum. Conclusion: The introduction of the new, systems-based course has had a negative impact on medical students' knowledge of surface anatomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel application-specific instruction set processor (ASIP) for use in the construction of modern signal processing systems is presented. This is a flexible device that can be used in the construction of array processor systems for the real-time implementation of functions such as singular-value decomposition (SVD) and QR decomposition (QRD), as well as other important matrix computations. It uses a coordinate rotation digital computer (CORDIC) module to perform arithmetic operations and several approaches are adopted to achieve high performance including pipelining of the micro-rotations, the use of parallel instructions and a dual-bus architecture. In addition, a novel method for scale factor correction is presented which only needs to be applied once at the end of the computation. This also reduces computation time and enhances performance. Methods are described which allow this processor to be used in reduced dimension (i.e., folded) array processor structures that allow tradeoffs between hardware and performance. The net result is a flexible matrix computational processing element (PE) whose functionality can be changed under program control for use in a wider range of scenarios than previous work. Details are presented of the results of a design study, which considers the application of this decomposition PE architecture in a combined SVD/QRD system and demonstrates that a combination of high performance and efficient silicon implementation are achievable. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper, chosen as a best paper from the 2005 SAMOS Workshop on Computer Systems: describes the for the first time the major Abhainn project for automated system level design of embedded signal processing systems. In particular, this describes four key novelties: novel algorithm modelling techniques for DSP systems, automated implementation realisation, algorithm transformation for system optimisation and automated inter-processor communication. This is applied to two complex systems: a radar and sonar system. In both cases technology which allows non-experts to automatically create low-overhead, high performance embedded signal processing systems is exhibited.

Relevância:

20.00% 20.00%

Publicador: