4 resultados para compartmental
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We irradiated different cellular compartments and measured changes in expression of the FOS gene at the mRNA and protein levels. [H-3]Thymidine and tritiated water were used to irradiate the nucleus and the whole cell, respectively. I-125-Concanavalin A binding was used to irradiate the cell membrane differentially. Changes in FOS mRNA and protein levels were measured using semi-quantitative RT-PCR and SDS-PAGE Western blotting, respectively, Irradiation of the nucleus or the whole cell at a dose rate of 0.075 Gy/h caused no change in the level of FOS mRNA expression, but modestly (1.5-fold) induced FOS protein after 0.5 h, Irradiation of the nucleus at a dose rate of 0.43 Gy/h induced FOS mRNA by 1.5-fold after 0.5 h, but there was no significant effect after whole-cell irradiation. FOS protein was transiently induced 2.5-fold above control levels 0.5 h after a 0.43-Gy/h exposure of the nucleus or the whole cell. Irradiation of the cell membrane at a dose rate of 1.8 Gy/h for up to 2 h caused no change in the levels of expression of FOS mRNA or protein, but a dose rate of 6.8 Gy/h transiently increased the level of FOS mRNA S-fold after 0.5 h, These data demonstrate the complexity of the cellular response to radiation-induced damage at low doses. The lack of quantitative agreement between the transcript and protein levels for FOS suggests a role for posttranscriptional regulation. (C) 2000 by Radiation Research Society.
Resumo:
This work deals with the transient analysis of crystal size distribution (CSD) for imperfectly mixed draft tube baffled (DTB) and forced circulation (FC) crystallizers. The DTB and FC crystallizers are described by the Compartmental and Mixed models respectively. Monte Carlo (MC) scheme has been employed for simulation purposes. The simulation results have been compared with the available experimental data of BENNETT and VAN BUREN for continuous urea crystallizers.
Resumo:
The air-sea exchange of two legacy persistent organic pollutants (POPs), γ-HCH and PCB 153, in the North Sea, is presented and discussed using results of regional fate and transport and shelf-sea hydrodynamic ocean models for the period 1996–2005. Air-sea exchange occurs through gas exchange (deposition and volatilization), wet deposition and dry deposition. Atmospheric concentrations are interpolated into the model domain from results of the EMEP MSC-East multi-compartmental model (Gusev et al, 2009). The North Sea is net depositional for γ-HCH, and is dominated by gas deposition with notable seasonal variability and a downward trend over the 10 year period. Volatilization rates of γ-HCH are generally a factor of 2–3 less than gas deposition in winter, spring and summer but greater in autumn when the North Sea is net volatilizational. A downward trend in fugacity ratios is found, since gas deposition is decreasing faster than volatilization. The North Sea is net volatilizational for PCB 153, with highest rates of volatilization to deposition found in the areas surrounding polluted British and continental river sources. Large quantities of PCB 153 entering through rivers lead to very high local rates of volatilization.
Resumo:
Rhizosphere processes play a key role in nutrient cycling in terrestrial ecosystems. Plant rhizodeposits supply low-molecular weight carbon substrates to the soil microbial community, resulting in elevated levels of activity surrounding the root. Mechanistic compartmental models that aim to model carbon flux through the rhizosphere have been reviewed and areas of future research necessary to better calibrate model parameters have been identified. Incorporating the effect of variation in bacterial biomass physiology on carbon flux presents a considerable challenge to experimentalists and modellers alike due to the difficulties associated with differentiating dead from dormant cells. A number of molecular techniques that may help to distinguish between metabolic states of bacterial cells are presented. The calibration of growth, death and maintenance parameters in rhizosphere models is also discussed. A simple model of rhizosphere carbon flow has been constructed and a sensitivity analysis was carried out on the model to highlight which parameters were most influential when simulating carbon flux. It was observed that the parameters that most heavily influenced long-term carbon compartmentalisation in the rhizosphere were exudation rate and biomass yield. It was concluded that future efforts to simulate carbon flow in the rhizosphere should aim to increase ecological realism in model structure.