130 resultados para compact objects

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Context: The masses previously obtained for the X-ray binary 2S 0921-630 inferred a compact object that was either a high-mass neutron star or low-mass black-hole, but used a previously published value for the rotational broadening (v sin i) with large uncertainties. Aims: We aim to determine an accurate mass for the compact object through an improved measurement of the secondary star's projected equatorial rotational velocity. Methods: We have used UVES echelle spectroscopy to determine the v sin i of the secondary star (V395 Car) in the low-mass X-ray binary 2S 0921-630 by comparison to an artificially broadened spectral-type template star. In addition, we have also measured v sin i from a single high signal-to-noise ratio absorption line profile calculated using the method of Least-Squares Deconvolution (LSD). Results: We determine v sin i to lie between 31.3±0.5 km s-1 to 34.7±0.5 km s-1 (assuming zero and continuum limb darkening, respectively) in disagreement with previous results based on intermediate resolution spectroscopy obtained with the 3.6 m NTT. Using our revised v sin i value in combination with the secondary star's radial velocity gives a binary mass ratio of 0.281±0.034. Furthermore, assuming a binary inclination angle of 75° gives a compact object mass of 1.37±0.13 M_?. Conclusions: We find that using relatively low-resolution spectroscopy can result in systemic uncertainties in the measured v sin i values obtained using standard methods. We suggest the use of LSD as a secondary, reliable check of the results as LSD allows one to directly discern the shape of the absorption line profile. In the light of the new v sin i measurement, we have revised down the compact object's mass, such that it is now compatible with a canonical neutron star mass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The light curve of PA-99-N2, one of the recently announced microlensing candidates toward M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect, and a binary lens. We find that the observations are consistent with an unresolved red giant branch or asymptotic giant branch star in M31 being microlensed by a binary lens. We find that the best-fit binary lens mass ratio is similar to1.2x10(-2), which is one of the most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 M-circle dot (95% confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09 and 32 M-circle dot, which is consistent with the primary being a stellar remnant and the secondary being a low-mass star or brown dwarf. The optical depth (or, alternatively, the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens, provided that dark compact objects comprise no less than 15% (or 5%) of halos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic pulse reflectometry is used to reconstruct the internal bore profile of trumpet and cornet leadpipe. The method distinguishes between radii differences as small as 0.03 mm, and has since been used by various UK-based brass instrument manufacturers as a diagnostic tool to detect defects that are significant enough to acoustically alter performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent growth in the shape-from-shading psychophysics literature has been paralled by an increasing availability of computer graphics hardware and software, to the extent that most psychophysical studies in this area now employ computer lighting algorithms. The most widely used of algorithms is shape-from-shading psychophysics is the Phong lighting model. This model, and other shading models of its genre, produce readily ineterpretable imiages of three-dimensional scenes. However, such algorithms are only approximations of how light interacts with real objects in the natural environment. Nevertheless, the results from psychophysical experiments using these techniques have been used to infer the processes underlying the perception of shape-from-shading in natural environments. It is important to establish whether this substitution is ever valid. We report a series of experiments investigating whether two recently reported illusions seen computer-generated, Phond shaded images occur for solid objects under real illuminants. The two illusions investigated are three-dimensional curvature contrast and the illuminant-position effect on perceived curvature. We show that both effects do occur for solid objects, and that the magnitude of these effects are equivalent regardless of whether subjects are presented with ray traced or solid objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the introduction of molecular computation1, 2, experimental molecular computational elements have grown3, 4, 5 to encompass small-scale integration6, arithmetic7 and games8, among others. However, the need for a practical application has been pressing. Here we present molecular computational identification (MCID), a demonstration that molecular logic and computation can be applied to a widely relevant issue. Examples of populations that need encoding in the microscopic world are cells in diagnostics or beads in combinatorial chemistry (tags). Taking advantage of the small size9 (about 1 nm) and large 'on/off' output ratios of molecular logic gates and using the great variety of logic types, input chemical combinations, switching thresholds and even gate arrays in addition to colours, we produce unique identifiers for members of populations of small polymer beads (about 100 m) used for synthesis of combinatorial libraries10, 11. Many millions of distinguishable tags become available. This method should be extensible to far smaller objects, with the only requirement being a 'wash and watch' protocol12. Our focus on converting molecular science into technology concerning analog sensors13, 14, turns to digital logic devices in the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1 - mum pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of similar to2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q- R-, and V-type NEOs tend to have orbits associated with "fast track" delivery from the main belt, whereas S-type NEOs tend to have orbits associated with "slow track" delivery. This outcome would be expected if space weathering occurs on time scales of >10(6) years. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present time-series data on Jupiter Family Comets (JFCs) 17P/Holmes, 47P/Ashbrook-Jackson and 137P/Shoemaker-Levy 2. In addition we also present results from `snap-shot' observations of comets 43P/Wolf-Harrington, 44P/Reinmuth 2, 103P/Hartley 2 and 104P/Kowal 2 taken during the same run. The comets were at heliocentric distances of between 3 and 7 au at this time. We present measurements of size and activity levels for the snap-shot targets. The time-series data allow us to constrain rotation periods and shapes, and thus bulk densities. We also measure colour indices (V - R) and (R - I) and reliable radii for these comets. We compare all of our findings to date with similar results for other comets and Kuiper Belt Objects (KBOs). We find that the rotational properties of nuclei and KBOs are very similar, that there is evidence for a cut-off in bulk densities at ~0.6 g cm-3 in both populations, and the colours of the two populations show similar correlations. For JFCs, there is no observational evidence for the optical colours being dependent on either position in the orbit or orbital parameters.

Relevância:

20.00% 20.00%

Publicador: