21 resultados para coat hangers
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Anti-adherent and antifungal activities of surfactant-coated poly (ethylcyanoacrylate) nanoparticles
Resumo:
Application of non-drug-loaded poly(ethylcyanoacrylate) nanoparticles (NP) to buccal epithelial cells (BEC) imparted both anti-adherent and antifungal effects. NP prepared using emulsion polymerisation and stabilised using cationic, anionic and non-ionic surfactants decreased Candida albicans blastospore adhesion, an effect attributable to the peripheral coating of surfactant. Cetrimide and Pluronic (R) P 123 were shown to be most effective, producing mean percentage reductions in blastospore adherence of 52.7 and 37.0, respectively. Resultant zeta potential matched the polarity of the surfactant, with those stabilised using cetrimide being especially positive (+31.3 mV). Preparation using anionic surfactants was shown to be problematic, with low yield and wide particle size distribution. Evaluation of the antifungal effect of the peripheral coat was evaluated using zones of inhibition and viable counts assays. The former test revealed poor surfactant diffusion through agar, but did show evidence of limited kill. However, the latter method showed that cationic surfactants associated with NP produced high levels of kill, in contrast to those coated with anionic surfactants, where kill was not evident. Non-ionic surfactant-coated NP produced intermediate kill rates. Results demonstrate that surfactant-coated NP, particularly the cationic types, form the possible basis of a prophylactic formulation that primes the candidal target (BEC) against fungal adhesion and infection. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The classification of a microsporidian parasite observed in the abdominal muscles of amphipod hosts has been repeatedly revised but still remains inconclusive. This parasite has variable spore numbers within a sporophorous vesicle and has been assigned to the genera Glugea, Pleistophora, Stempellia, and Thelohania. We used electron microscopy and molecular evidence to resolve the previous taxonomic confusion and confirm its identification as Pleistophora mulleri. The life cycle of P. mulleri is described from the freshwater amphipod host Gammarus duebeni celticus. Infection appeared as white tubular masses within the abdominal muscle of the host. Light and transmission electron microscope examination revealed the presence of an active microsporidian infection that was diffuse within the muscle block with no evidence of xenoma formation. Paucinucleate merogonial plasmodia were surrounded by an amorphous coat immediately external to the plasmalemma. The amorphous coat developed into a merontogenetic sporophorous vesicle that was present throughout sporulation. Sporogony was polysporous resulting in uninucleate spores, with a bipartite polaroplast, an anisofilar polar filament and a large posterior vacuole. SSU rDNA analysis supported the ultrastructural evidence clearly placing this parasite within the genus Pleistophora. This paper indicates that Pleistophora species are not restricted to vertebrate hosts.
Resumo:
This study describes the development and optimization of an immunomagnetic separation (IMS) method to isolate Mycobacterium bovis cells from lymph node tissues. Gamma-irradiated whole M. bovis AF2122/97 cells and ethanol-extracted surface antigens of such cells were used to produce M. bovis-speci?c polyclonal and monoclonal antibodies in rabbits and mice. They were also used to generate M. bovis-speci?c peptide ligands by phage display biopanning. The various antibodies and peptide ligands obtained were used to coat MyOne tosyl-activated Dynabeads (Life Technologies), singly or in combination, and evaluated for IMS. Initially, M. bovis capture from Middlebrook 7H9 broth suspensions (concentration range, 10 to 105 CFU/ml) was evaluated by IMS combined with an M. bovis-speci?c touchdown PCR. IMS-PCR results and, subsequently, IMS-culture results indicated that the beads with greatest immunocapture capability for M. bovis in broth were those coated simultaneously with a monoclonal antibody and a biotinylated 12-mer peptide. These dually coated beads exhibited minimal capture (mean of 0.36% recovery) of 12 other Mycobacterium spp. occasionally encountered in veterinary tuberculosis (TB) diagnostic laboratories. When the optimized IMS method was applied to various M. bovis-spiked lymph node matrices, it demonstrated excellent detection sensitivities (50% limits of detection of 3.16 and 57.7 CFU/ml of lymph node tissue homogenate for IMS-PCR and IMS-culture, respectively). The optimized IMS method therefore has the potential to improve isolation of M. bovis from lymph nodes and hence the diagnosis of bovine tuberculosis.
Resumo:
The cidal activities of aqueous taurolidine (2.0% w/v containing 5.0% wlv polyvinylpyrrolidone as a solubilising agent) and alcoholic taurolidine (2.0% w/v dissolved in Isopropyl alcohol 50% v/v) against spores of Bacillus subtilis NCTC 10073 were evaluated at 20 degrees C, 37 degrees C, 45 degrees C and 55 degrees C. Increased temperature increased both the rate and extent of sporicidal activity of both solutions. Total spore kill was not observed in either solution type over the range of temperatures and contact times examined. There were no observed differences between the sporicidal activities of aqueous and alcoholic taurolidine solutions at all temperatures examined. Ultrasonic energy (50 Hz operating frequency in a 150 W ultrasonic bath in conjunction with increasing temperature allowed to rise naturally from ambient temperature to 41 degrees C over 4 h) enhanced the sporicidal activities of both solution types. However, the difference in activity between the two solution types was not significant. Compared to normal spores, alteration of spore coat layers (hydrogen-form spores) did not alter spore susceptibility to aqueous taurolidine at elevated temperatures of 37 degrees C and 55 degrees C.
Resumo:
In this study, evidence is provided of social immunity in the offspring of a sub-social species, the burying beetle, Nicrophorus vespilloides. Nicrophorus vespilloides is a carrion breeder and, in a similar fashion to the adult beetles, the offspring produce exudates that exhibit lytic activity, which are used to coat the breeding resource. This strategy defends against the microbial community. The lytic activity in larval exudates declines as the brood develops, perhaps being most beneficial at the start of the breeding bout. Changing levels of parental care through widowing/orphaning affects lytic activity in the larval exudates, with levels decreasing in the absence of both parents.
Resumo:
AIMS AND OBJECTIVES: This cross sectional descriptive study was designed to survey patient opinion towards dental clinical attire, name badges and commonly used cross-infection control measures.
METHOD: Patients attending a dental hospital for a consultation appointment were asked to complete a questionnaire accompanied by photographs of models portraying a range of clinical attire. A representative sample of patients completed 188 questionnaires over a four week period.
RESULTS: The study found that the majority of patients felt clinical attire was important and that they preferred dental professionals to wear name badges. The majority of patients also preferred dentists to use both safety glasses and face masks. When asked to indicate which clinical attire was most appropriate for a consultant/specialist to wear, the overwhelming opinion was that of smart dress accompanied with a white coat. In addition, most respondents wished their dentist to wear a traditional white, dental tunic.
CONCLUDING REMARKS: It is hoped that this study will be informative for the dental team and that the results will be taken into consideration when considering appropriate clinical attire in accordance with patient opinions.
Resumo:
This paper argues that the modern barn in Ireland is a complex social and architectural phenomena that is without, or has yet to find, a satisfactory discourse. Emerging in the middle third of the twentieth century, the modern barn – replete with corrugated iron and I-sections – continues to represent a presence in the Irish landscape whose ubiquity is as emphatic as its flexibility. It is, however, its universal properties that begin to suggest connections with wider narratives. The modernising aspects of the barn that appear in the 1920s and 30s begin to conflate with a rhetoric of architectural modernism which was simultaneously appearing across Europe. But while the relationship between high modernism’s critique of what it divined as the inspirational qualities of utilitarian buildings – Walter Gropius on grain silos, Le Corbusier on aircraft hangers etc. – has been well-documented, in Ireland this relationship perhaps contains another layer of complexity.
The barn’s consolidation as a modern type coincided with the search for a nation’s cultural identity after centuries of colonial rule. This tended to be an introspective vision that prioritised rural space over urban space, agriculture over industry, and imagined the small farm as a central tenet in the construction of a new State. This paper suggests that the twentieth-century barn – as a product of the mechanisation of agriculture promoted by the new administrations – is an iconic structure, emblematic of attempts to reconcile the contradictory forces and imagery of modernity with the mores of a traditional society. Moreover, given a cultural purview that was often ambivalent or even hostile to the ideologies and forms of modernity, the barn in Ireland is, perhaps, not so much the inspiration but the realisation of an architectural modernism in that country at its most pervasive, enduring and unself-conscious.
Resumo:
The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the structure of BslA, and noted the presence of a large surface-exposed hydrophobic patch. Such surface patches are also observed in the class of surface-active proteins known as hydrophobins, and are thought to mediate their interfacial activity. However, although functionally related to the hydrophobins, BslA shares no sequence nor structural similarity, and here we show that the mechanism of action is also distinct. Specifically, our results suggest that the amino acids making up the large, surface-exposed hydrophobic cap in the crystal structure are shielded in aqueous solution by adopting a random coil conformation, enabling the protein to be soluble and monomeric. At an interface, these cap residues refold, inserting the hydrophobic side chains into the air or oil phase and forming a three-stranded β-sheet. This form then self-assembles into a well-ordered 2D rectangular lattice that stabilizes the interface. By replacing a hydrophobic leucine in the center of the cap with a positively charged lysine, we changed the energetics of adsorption and disrupted the formation of the 2D lattice. This limited structural metamorphosis represents a previously unidentified environmentally responsive mechanism for interfacial stabilization by proteins.
Resumo:
Background: Small adenomas may be missed during colonoscopy, but chromoscopy has been reported to enhance detection. The aim of this randomized-controlled trial was to determine the effect of total colonic dye spray on adenoma detection during routine colonoscopy.
Methods: Consecutive outpatients undergoing routine colonoscopy were randomized to a dye-spray group (0.1% indigo carmine used to coat the entire colon during withdrawal from the cecum) or control group (no dye).
Results: Two hundred fifty-nine patients were randomized, 124 to the dye-spray and 135 to the control group; demographics, indication for colonoscopy, and quality of the preparation were similar between the groups. Extubation from the cecum took a median of 9:05 minutes (range: 2:4824:44 min) in the dye-spray group versus 4:52 minutes (range: 1:42-15:21 min] in the control group (p <0.0001). The proportion of patients with at least 1 adenoma and the total number of adenomas were not different between groups. However, in the dye-spray group significantly more diminutive adenomas (
Conclusions: Dye-spray increases the detection of small adenomas in the proximal colon and patients with multiple adenomas, but long-term outcomes should be studied to determine the clinical value of these findings.
Resumo:
BACKGROUND: Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.
METHODOLOGY/PRINCIPAL FINDINGS: Previously a chicken pre-B lymphoma cell line (DKO-R) was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.
CONCLUSIONS/SIGNIFICANCE: We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the localisation but not the impact of clathrin on mitosis appears to be robust in plants, mammalian and chicken B-cells.
Resumo:
Internalization of cargo proteins and lipids at the cell surface occurs in both a constitutive and signal-regulated manner through clathrin-mediated and other endocytic pathways. Clathrin-coated vesicle formation is a principal uptake route in response to signalling events. Protein-lipid and protein-protein interactions control both the targeting of signalling molecules and their binding partners to membrane compartments and the assembly of clathrin coats. An emerging aspect of membrane trafficking research is now addressing how signalling cascades and vesicle coat assembly and subsequently disassembly are integrated.
Resumo:
Vesicle and tubule transport containers move proteins and lipids from one membrane system to another. Newly forming transport containers frequently have electron-dense coats. Coats coordinate the accumulation of cargo and sculpt the membrane. Recent advances have shown that components of both COP1 and clathrin-adaptor coats share the same structure and the same motif-based cargo recognition and accessory factor recruitment mechanisms, which leads to insights on conserved aspects of coat recruitment, polymerisation and membrane deformation. These themes point to the way in which evolutionarily conserved features underpin these diverse pathways.
Resumo:
Clathrin-mediated endocytosis involves cargo selection and membrane budding into vesicles with the aid of a protein coat. Formation of invaginated pits on the plasma membrane and subsequent budding of vesicles is an energetically demanding process that involves the cooperation of clathrin with many different proteins. Here we investigate the role of the brain-enriched protein epsin 1 in this process. Epsin is targeted to areas of endocytosis by binding the membrane lipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)). We show here that epsin 1 directly modifies membrane curvature on binding to PtdIns(4,5)P(2) in conjunction with clathrin polymerization. We have discovered that formation of an amphipathic alpha-helix in epsin is coupled to PtdIns(4,5)P(2) binding. Mutation of residues on the hydrophobic region of this helix abolishes the ability to curve membranes. We propose that this helix is inserted into one leaflet of the lipid bilayer, inducing curvature. On lipid monolayers epsin alone is sufficient to facilitate the formation of clathrin-coated invaginations.
Resumo:
Clathrin-mediated vesicle recycling in synapses is maintained by a unique set of endocytic proteins and interactions. We show that endophilin localizes in the vesicle pool at rest and in spirals at the necks of clathrin-coated pits (CCPs) during activity in lamprey synapses. Endophilin and dynamin colocalize at the base of the clathrin coat. Protein spirals composed of these proteins on lipid tubes in vitro have a pitch similar to the one observed at necks of CCPs in living synapses, and lipid tubules are thinner than those formed by dynamin alone. Tubulation efficiency and the amount of dynamin recruited to lipid tubes are dramatically increased in the presence of endophilin. Blocking the interactions of the endophilin SH3 domain in situ reduces dynamin accumulation at the neck and prevents the formation of elongated necks observed in the presence of GTPγS. Therefore, endophilin recruits dynamin to a restricted part of the CCP neck, forming a complex, which promotes budding of new synaptic vesicles.
Resumo:
During the past decade, many molecular components of clathrin-mediated endocytosis have been identified and proposed to play various hypothetical roles in the process [Nat. Rev. Neurosci. 1 (2000) 161; Nature 422 (2003) 37]. One limitation to the evaluation of these hypotheses is the efficiency and resolution of immunolocalization protocols currently in use. In order to facilitate the evaluation of these hypotheses and to understand more fully the molecular mechanisms of clathrin-mediated endocytosis, we have developed a protocol allowing enhanced and reliable subcellular immunolocalization of proteins in synaptic endocytic zones in situ. Synapses established by giant reticulospinal axons in lamprey are used as a model system for these experiments. These axons are unbranched and reach up to 80-100 microm in diameter. Synaptic active zones and surrounding endocytic zones are established on the surface of the axonal cylinder. To provide access for antibodies to the sites of synaptic vesicle recycling, axons are lightly fixed and cut along their longitudinal axis. To preserve the ultrastructure of the synaptic endocytic zone, antibodies are applied without the addition of detergents. Opened axons are incubated with primary antibodies, which are detected with secondary antibodies conjugated to gold particles. Specimens are then post-fixed and processed for electron microscopy. This approach allows preservation of the ultrastructure of the endocytic sites during immunolabeling procedures, while simultaneously achieving reliable immunogold detection of proteins on endocytic intermediates. To explore the utility of this approach, we have investigated the localization of a GTPase, dynamin, on clathrin-coated intermediates in the endocytic zone of the lamprey giant synapse. Using the present immunogold protocol, we confirm the presence of dynamin on late stage coated pits [Nature 422 (2003) 37] and also demonstrate that dynamin is recruited to the coat of endocytic intermediates from the very early stages of the clathrin coat formation. Thus, our experiments show that the current pre-embedding immunogold method is a useful experimental tool to study the molecular mechanisms of synaptic vesicle recycling.