35 resultados para cloud-based applications

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many cloud-based applications employ a data centre as a central server to process data that is generated by edge devices, such as smartphones, tablets and wearables. This model places ever increasing demands on communication and computational infrastructure with inevitable adverse effect on Quality-of-Service and Experience. The concept of Edge Computing is predicated on moving some of this computational load towards the edge of the network to harness computational capabilities that are currently untapped in edge nodes, such as base stations, routers and switches. This position paper considers the challenges and opportunities that arise out of this new direction in the computing landscape.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several studies in the past have revealed that network end user devices are left powered up 24/7 even when idle just for the sake of maintaining Internet connectivity. Network devices normally support low power states but are kept inactive due to their inability to maintain network connectivity. The Network Connectivity Proxy (NCP) has recently been proposed as an effective mechanism to impersonate network connectivity on behalf of high power devices and enable them to sleep when idle without losing network presence. The NCP can efficiently proxy basic networking protocol, however, proxying of Internet based applications have no absolute solution due to dynamic and non-predictable nature of the packets they are sending and receiving periodically. This paper proposes an approach for proxying Internet based applications and presents the basic software architectures and capabilities. Further, this paper also practically evaluates the proposed framework and analyzes expected energy savings achievable under-different realistic conditions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Increasingly infrastructure providers are supplying the cloud marketplace with storage and on-demand compute resources to host cloud applications. From an application user's point of view, it is desirable to identify the most appropriate set of available resources on which to execute an application. Resource choice can be complex and may involve comparing available hardware specifications, operating systems, value-added services, such as network configuration or data replication, and operating costs, such as hosting cost and data throughput. Providers' cost models often change and new commodity cost models, such as spot pricing, have been introduced to offer significant savings. In this paper, a software abstraction layer is used to discover infrastructure resources for a particular application, across multiple providers, by using a two-phase constraints-based approach. In the first phase, a set of possible infrastructure resources are identified for a given application. In the second phase, a heuristic is used to select the most appropriate resources from the initial set. For some applications a cost-based heuristic is most appropriate; for others a performance-based heuristic may be used. A financial services application and a high performance computing application are used to illustrate the execution of the proposed resource discovery mechanism. The experimental result shows the proposed model could dynamically select an appropriate set of resouces that match the application's requirements.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

With the availability of a wide range of cloud Virtual Machines (VMs) it is difficult to determine which VMs can maximise the performance of an application. Benchmarking is commonly used to this end for capturing the performance of VMs. Most cloud benchmarking techniques are typically heavyweight - time consuming processes which have to benchmark the entire VM in order to obtain accurate benchmark data. Such benchmarks cannot be used in real-time on the cloud and incur extra costs even before an application is deployed.

In this paper, we present lightweight cloud benchmarking techniques that execute quickly and can be used in near real-time on the cloud. The exploration of lightweight benchmarking techniques are facilitated by the development of DocLite - Docker Container-based Lightweight Benchmarking. DocLite is built on the Docker container technology which allows a user-defined portion (such as memory size and the number of CPU cores) of the VM to be benchmarked. DocLite operates in two modes, in the first mode, containers are used to benchmark a small portion of the VM to generate performance ranks. In the second mode, historic benchmark data is used along with the first mode as a hybrid to generate VM ranks. The generated ranks are evaluated against three scientific high-performance computing applications. The proposed techniques are up to 91 times faster than a heavyweight technique which benchmarks the entire VM. It is observed that the first mode can generate ranks with over 90% and 86% accuracy for sequential and parallel execution of an application. The hybrid mode improves the correlation slightly but the first mode is sufficient for benchmarking cloud VMs.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

How can applications be deployed on the cloud to achieve maximum performance? This question is challenging to address with the availability of a wide variety of cloud Virtual Machines (VMs) with different performance capabilities. The research reported in this paper addresses the above question by proposing a six step benchmarking methodology in which a user provides a set of weights that indicate how important memory, local communication, computation and storage related operations are to an application. The user can either provide a set of four abstract weights or eight fine grain weights based on the knowledge of the application. The weights along with benchmarking data collected from the cloud are used to generate a set of two rankings - one based only on the performance of the VMs and the other takes both performance and costs into account. The rankings are validated on three case study applications using two validation techniques. The case studies on a set of experimental VMs highlight that maximum performance can be achieved by the three top ranked VMs and maximum performance in a cost-effective manner is achieved by at least one of the top three ranked VMs produced by the methodology.