10 resultados para autenticazione protocolli crittografia simulink implementazione stateflow
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The simultaneous heat and moisture transfer in the building envelope has an important influence on the indoor environment and the overall performance of buildings. In this paper, a model for predicting whole building heat and moisture transfer was presented. Both heat and moisture transfer in the building envelope and indoor air were simultaneously considered; their interactions were modeled. The coupled model takes into account most of the main hygrothermal effects in buildings. The coupled system model was implemented in MATLAB-Simulink, and validated by using a series of published testing tools. The new program was applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption under different climates. The results show that the use of more detailed simulation routines can result in improvements to the building's design for energy optimisation through the choice of proper hygroscopic materials, which would not be indicated by simpler calculation techniques.
Resumo:
This paper investigates the control and operation of doubly-fed induction generator (DFIG) and fixed-speed induction generator (FSIG) based wind farms under unbalanced grid conditions. A DFIG system model suitable for analyzing unbalanced operation is developed, and used to assess the impact of an unbalanced supply on DFIG and FSIG operation. Unbalanced voltage at DFIG and FSIG terminals can cause unequal heating on the stator windings, extra mechanical stresses and output power fluctuations. These problems are particularly serious for the FSIG-based wind farm without a power electronic interface to the grid. To improve the stability of a wind energy system containing both DFIG and FSIG based wind farms during network unbalance, a control strategy of unbalanced voltage compensation by the DFIG systems is proposed. The DFIG system compensation ability and the impact of transmission network impedance are illustrated. The simulation results implemented in Matlab/Simulink show that the proposed DFIG control system improves not only its own performance, but also the stability of the FSIG system with the same grid connection point during network unbalance.
Resumo:
Fuel economy has become an important consideration in forklift truck design, particularly in Europe. A simulation of the fuel consumption and performance of a forklift truck has been developed, validated and subsequently used to determine the energy consumed by individual powertrain components during drive cycles.
The truck used in this study has a rated lifting capacity of 2500kg, and is powered by a 2.6 litre naturally aspirated diesel engine with a fuel pump containing a mechanical variable-speed governor. The drivetrain consisted of a torque convertor, hydraulic clutch and single speed transmission.
AVL Cruise was used to simulate the vehicle powertrain, with coupled Mathworks Simulink models used to simulate the hydraulic and control systems and governor. The vehicle has been simulated on several performance and fuel consumption drive cycles with the main focus being the VDI 2198 fuel consumption drive cycle.
To validate the model, a truck was instrumented and measurements taken to compare the performance and instantaneous fuel consumption to simulated values. The fuel injector pump was modified and calibrated to enable instantaneous fuel flow to be measured.
The model has been validated to within acceptable limits and has been used to investigate the effect four different torque converters have on the fuel consumption and performance of the forklift truck. The study demonstrates how the model can be used to compare the fuel consumption and performance trade-offs when selecting drivetrain components.
Resumo:
his paper proposes an optimisation-based method to calculate the critical slip (speed) of dynamic stability and critical clearing time (CCT) of a self-excited induction generator (SEIG). A simple case study using the Matlab/Simulink environment has been included to exemplify the optimisation method. Relationships between terminal voltage, critical slip and reactance of transmission line, CCT and inertial constant have been determined, based on which analysis of impact on relaying setting has been further conducted for another simulation case.
Resumo:
Mathematical modelling has become an essential tool in the design of modern catalytic systems. Emissions legislation is becoming increasingly stringent, and so mathematical models of aftertreatment systems must become more accurate in order to provide confidence that a catalyst will convert pollutants over the required range of conditions.
Automotive catalytic converter models contain several sub-models that represent processes such as mass and heat transfer, and the rates at which the reactions proceed on the surface of the precious metal. Of these sub-models, the prediction of the surface reaction rates is by far the most challenging due to the complexity of the reaction system and the large number of gas species involved. The reaction rate sub-model uses global reaction kinetics to describe the surface reaction rate of the gas species and is based on the Langmuir Hinshelwood equation further developed by Voltz et al. [1] The reactions can be modelled using the pre-exponential and activation energies of the Arrhenius equations and the inhibition terms.
The reaction kinetic parameters of aftertreatment models are found from experimental data, where a measured light-off curve is compared against a predicted curve produced by a mathematical model. The kinetic parameters are usually manually tuned to minimize the error between the measured and predicted data. This process is most commonly long, laborious and prone to misinterpretation due to the large number of parameters and the risk of multiple sets of parameters giving acceptable fits. Moreover, the number of coefficients increases greatly with the number of reactions. Therefore, with the growing number of reactions, the task of manually tuning the coefficients is becoming increasingly challenging.
In the presented work, the authors have developed and implemented a multi-objective genetic algorithm to automatically optimize reaction parameters in AxiSuite®, [2] a commercial aftertreatment model. The genetic algorithm was developed and expanded from the code presented by Michalewicz et al. [3] and was linked to AxiSuite using the Simulink add-on for Matlab.
The default kinetic values stored within the AxiSuite model were used to generate a series of light-off curves under rich conditions for a number of gas species, including CO, NO, C3H8 and C3H6. These light-off curves were used to generate an objective function.
This objective function was used to generate a measure of fit for the kinetic parameters. The multi-objective genetic algorithm was subsequently used to search between specified limits to attempt to match the objective function. In total the pre-exponential factors and activation energies of ten reactions were simultaneously optimized.
The results reported here demonstrate that, given accurate experimental data, the optimization algorithm is successful and robust in defining the correct kinetic parameters of a global kinetic model describing aftertreatment processes.
Resumo:
Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance
Resumo:
Electric vehicles (EVs) and hybrid EVs are the way forward for green transportation and for establishing low-carbon economy. This paper presents a split converter-fed four-phase switched reluctance motor (SRM) drive to realize flexible integrated charging functions (dc and ac sources). The machine is featured with a central-tapped winding node, eight stator slots, and six rotor poles (8/6). In the driving mode, the developed topology has the same characteristics as the traditional asymmetric bridge topology but better fault tolerance. The proposed system supports battery energy balance and on-board dc and ac charging. When connecting with an ac power grid, the proposed topology has a merit of the multilevel converter; the charging current control can be achieved by the improved hysteresis control. The energy flow between the two batteries is balanced by the hysteresis control based on their state-of-charge conditions. Simulation results in MATLAB/Simulink and experiments on a 150-W prototype SRM validate the effectiveness of the proposed technologies, which may provide a solution to EV charging issues associated with significant infrastructure requirements.
Resumo:
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.
Resumo:
Simulation is a well-established and effective approach to the development of fuel-efficient and low-emissions vehicles in both on-highway and off-highway applications.
The simulation of on-highway automotive vehicles is widely reported in literature, whereas research relating to non-automotive and off-highway vehicles is relatively sparse. This review paper focuses on the challenges of simulating such vehicles and discusses the differences in the approach to drive cycle testing and experimental validation of vehicle simulations. In particular, an inner-city diesel-electric hybrid bus and an ICE (Internal Combustion Engine) powered forklift truck will be used as case studies.
Computer prediction of fuel consumption and emissions of automotive vehicles on standardised drive cycles is well-established and commercial software packages such as AVL CRUISE have been specifically developed for this purpose. The vehicles considered in this review paper present new challenges from both the simulation and drive-cycle testing perspectives. For example, in the case of the forklift truck, the drive cycles involve reversing elements, variable mass, lifting operations, and do not specify a precise velocity-time profile. In particular, the difficulties associated with the prediction of productivity, i.e. the maximum rate of completing a series of defined operations, are discussed. In the case of the hybrid bus, the standardised drive cycles are unrepresentative of real-life use and alternative approaches are required in the development of efficient and low-emission vehicles.
Two simulation approaches are reviewed: the adaptation of a standard automotive vehicle simulation package, and the development of bespoke models using packages such as MATLAB/Simulink.