42 resultados para amino acid transport

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ericoid mycorrhizas are believed to improve N nutrition of many ericaceous plant species that typically occur in habitats with impoverished nutrient status, by releasing amino acids from organic N forms. Despite the ubiquity of mycorrhizal formation the mechanisms and regulation of nutrient transport in mycorrhizal associations are poorly understood. We used an electrophysiological approach to study how amino acid transport characteristics of Calluna vulgaris were affected by colonization with the ericoid mycorrhiza fungus Hymenoscyphus ericae. Both the Vmax and Km parameters of amino acid uptake were affected by fungal colonization in a manner consistent with an increased availability of amino acid to the plant. The ecophysiological significance of altered amino acid transport in colonized root cells of C. vulgaris is discussed. © New Phytologist (2002).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is an important gastrointestinal hormone, which regulates insulin release and glucose homeostasis, but is rapidly inactivated by enzymatic N-terminal truncation. Here we report the enzyme resistance and biological activity of several Glu(3) -substituted analogues of GIP namely; (Ala(3))GIP, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))GIP. Only (Lys(3))- GIP demonstrated moderately enhanced resistance to DPP-IV (p <0.05 to p <0.01) compared to native GIP. All analogues demonstrated a decreased potency in cAMP production (EC50 1.47 to 11.02 nM; p <0.01 to p <0.001) with (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated cAMP production (p <0.05). In BRIN-BD11 cells, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))- GIP did not stimulate insulin secretion with both (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated insulin secretion (p <0.05). Injection of each GIP analogue together with glucose in oblob mice significantly increased the glycaemic excursion compared to control (p <0.05 to p <0.001). This was associated with lack of significant insulin responses. (Ala(3))GIP, (Phe(3))GIP and (Tyr(3))GIP, when administered together with GIP, significantly reduced plasma insulin (p <0.05 top <0.01) and impaired the glucose-lowering ability (p <0.05 to p <0.01) of the native peptide. The DPP-IV resistance and GIP antagonism observed were similar but less pronounced than (Pro(3))GIP. These data demonstrate that position 3 amino acid substitution of GIP with (Ala(3)), (Phe(3)), (Tyr(3)) or (Pro(3)) provides a new class of functional GIP receptor antagonists. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rh(II) acetate-catalyzed decompn. of diazophenylacetates PhC(N2)CO2Me 1 and PhC(N2)CO2R* 3 [R*OH = (-)-borneol, (+)-menthol, (-)-8-phenylmenthol] in the presence of a range of N-H compds. results in an N-H insertion reaction of the intermediate carbenoids and formation of N-substituted phenylglycine derivs. PhCH(NR1R2)CO2Me 2 [R1 = R2 = Et; R1 = 4-MeOC6H4, COCH2CHMe2, CO2CH2Ph, (S)-CH(CO2Me)CH2Ph, (S)-CHMePh, R2 = H; 64-83% yields] and PhCH(NR1R2)CO2R* 4 (R1 = R2 = Et; R1 = COMe, CO2Me, R2 = H; same R*; 37-71% yields). The corresponding reactions of di-Me ?-diazobenzylphosphonate PhC(N2)P(O)(OMe)2 5 with primary amines constitute a simple route to aminophosphonates PhCH(NHR)P(O)(OMe)2 6 (R = COMe, COEt, CO2CH2Ph, CO2CMe3, 4-ClC6H4, 4-MeC6H4, 4-MeOC6H4; 13-96% yields).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids (ILs) having either cations or anions derived from naturally occurring amino acids have been synthesized and characterized as amino acid-based ionic liquids (AAILs) In this work, the experimental measurements of the temperature dependence or density. viscosity, heat capacity, and thermal conductivity of several AAILs, namely, tributylmethylammonium serinate ([N-444][Ser], tributylmethylammonium taurmate ([N-444][Tau]) tributylmethylammonium lysinate a [N-444][ Lys]), tributylmethylammonium threonate ([N-444][Thr]), tetrabutylphosphonium serinate ([P-4444][Ser]), tetrabutylphosphonium taurmate ([P-4444][Tau]), tetrabutylphosphonium lysinate ([P-4444][Lys]), tetrabutylphosphonium threonate P-4444 Thr tetrabutylphosphonium prolinate P-4444 ((Pro(), tetrabutylphosphonium valinate ([P-4444][Val]), and tetrabutylphosphonium cysteinate ([P-4444][Cys]), are presented The influence of cations and anions on studied properties is discussed. On the basis of experimental data. the QSPR (quantitative structure property relationship) correlations and group contribution methods for thermophysical properties of AAILs have been developed, which form the basis for the development of the computer-aided molecular design (CAMD) of AAILs It has also been demonstrated that that the predictive data obtained by con elation methods ale in good agreement with the experimental data The correlations developed, herein. can thus be used to evaluate the studied thermophysical properties of AAILs for use in process design or in the CAMD of new AAILs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natriuretic peptides are common components of reptile venoms and molecular cloning of their biosynthetic precursors has revealed that in snakes, they co-encode bradykinin-potentiating peptides and in venomous lizards, some co-encode bradykinin inhibitory peptides such as the helokinestatins. The common natriuretic peptide/helokinestatin precursor of the Gila Monster, Heloderma suspectum, encodes five helokinestatins of differing primary structures. Here we report the molecular cloning of a natriuretic peptide/helokinestatin precursor cDNA from a venom-derived cDNA library of the Mexican beaded lizard (Heloderma horridum). Deduction of the primary structure of the encoded precursor protein from this cloned cDNA template revealed that it consisted of 196 amino acid residues encoding a single natriuretic peptide and five helokinestatins. While the natriuretic peptide was of identical primary structure to its Gila Monster (H. suspectum) homolog, the encoded helokinestatins were not, with this region of the common precursor displaying some significant differences to its H. suspectum homolog. The helokinestatin-encoding region contained a single copy of helokinestatin-1, 2 copies of helokinestatin-3 and single copies of 2 novel peptides, (Phe)(5)-helokinestatin-2 (VPPAFVPLVPR) and helokinestatin-6 (GPPFNPPPFVDYEPR). All predicted peptides were found in reverse phase HPLC fractions of the same venom. Synthetic replicates of both novel helokinestatins were found to antagonize the relaxing effect of bradykinin on rat tail artery smooth muscle. Thus lizard venom continues to provide a source of novel biologically active peptides. (C) 2011 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iron prophyrin complex has been immobilized on the surfaces of platinum, silver, and indium doped-tin oxide coated glass by using the poly(gamma-ethyl L-glutamate)-N-(3-aminopropyl)imidazole derivative 1 as a linking agent, thus allowing-the surface-enhanced resonance Raman and UV-VIS absorption spectra and electrochemical properties of the porphyrin to be studied in solvents in which it is not normally soluble.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galactokinase catalyses the site-and stereospecific phosphorylation of galactose at the expense of ATP. The specificity of bacterial galactokinase enzymes can be broadened by alteration of a tyrosine residue to a histidine. The effects of altering the equivalent residue in human galactokinase (Tyr379) were investigated by testing all 19 possible variants. All of these alterations, except Y379P, resulted in soluble protein on expression in Escherichia coli and all the soluble variants could catalyse the phosphorylation of galactose, except Y379A and Y379E. The variants Y379C, Y379K, Y379R, Y379S and Y379W were all able to catalyse the phosphorylation of a variety of monosaccharides, including ones that are not acted on by the wild-type enzyme. Novel substrates for these variant galactokinases included D-mannose and D-fructose. The latter monosaccharide is presumed to react in the pyranose configuration. Molecular modelling suggested that the alterations do not cause changes to the overall structure of the enzyme. However, alteration of Tyr379 increases the flexibility of the peptide backbone in regions surrounding the active site. Therefore, it is proposed that alteration of Tyr379 affects the substrate specificity by the propagation of changes in flexibility to the active site, permitting a broader range of compounds to be accommodated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mast cell activation by polycationic substances is believed to result from a direct activation of G protein alpha subunits and it was suggested that the adaption of amphipathic, alpha-helical conformations would allow the peptide to reach the cytosolic compartment to interact with G proteins (Mousli et al., 1994, Immunopharmacology 27, 1, for review). We investigated the histamine-releasing activity of model peptides as well as analogues of magainin 2 amide and neuropeptide Y with different amphipathicities and alpha-helix content on rat peritoneal mast cells. Amphipathic helicity is not a prerequisite for mast cell activation. Moreover, non-helical magainin peptides with high histamine-releasing activity were less active in the liberation of carboxyfluoresceine from negatively charged liposomes, indicating that peptide-induced mast cell activation and peptide-induced membrane perturbation do not correlate. In contrast to the negligible influence of the secondary structure, amino acid configuration may exert a striking influence on peptide-induced mast cell activation. Thus histamine-release by substance P was markedly impaired when the L-amino acids in the positively charged N-terminal region were replaced by D-amino acids, with [D-Arg(1)]substance P being the most inactive substance P diastereoisomer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (Wzx(EcO157)) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that Wzx(EcO157) consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.