15 resultados para Zhan guo ce.
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The reactivity of the species formed at the surface of a Au/Ce(La)O2 catalyst during the water������¢���¯���¿���½���¯���¿���½gas shift (WGS) reaction were investigated by operando diffuse reflectance Fourier transform spectroscopy (DRIFTS) at the chemical steady state during isotopic transient kinetic analyses (SSITKA). The exchanges of the reaction product CO2 and of formate and carbonate surface species were followed during an isotopic exchange of the reactant CO using a DRIFTS cell as a single reactor. The DRIFTS cell was a modified commercial cell that yielded identical reaction rates to that measured over a quartz plug-flow reactor. The DRIFTS signal was used to quantify the relative oncentrations of the surface species and CO2. The analysis of the formate exchange curves between 428 and 493 K showed that at least two levels of reactivity were present. ������¢���¯���¿���½���¯���¿���½Slow formates������¢���¯���¿���½���¯���¿���½ displayed an exchange rate constant 10- to 20-fold slower than that of the reaction product CO2. ������¢���¯���¿���½���¯���¿���½Fast formates������¢���¯���¿���½���¯���¿���½ were exchanged on a time scale similar to that of CO2. Multiple nonreactive readsorption of CO2 took place, accounting for the kinetics of the exchange of CO2(g) and making it impossible to determine the number of active sites through the SSITKA technique. The concentration (in mol g������¢���¯���¿���½���¯���¿���½1) of formates on the catalyst was determined through a calibration curve and allowed calculation of the specific rate of formate decomposition. The rate of CO2 formation was more than an order of magnitude higher than the rate of decomposition of formates (slow + fast species), indicating that all of the formates detected by DRIFTS could not be the main reaction intermediates in the production of CO2. This work stresses the importance of full quantitative analyses (measuring both rate constants and adsorbate concentrations) when investigating the role of adsorbates as potential reaction intermediates, and illustrates how even reactive species seen by DRIFTS may be unimportant in the overall reaction scheme.
Resumo:
Pretty vacant: The excellent oxygen storage capacity (OSC) of ?-Ce2Zr2O8 (see picture; Ce gray, Zr green, O red) is shown to be a result of its unique structural features; after removing oxygen atoms, the structural relaxation is local (vacancy shown in brown), and both the localized structural relaxation and the number of localized structural relaxations are maximized.
Resumo:
The kinetics of reductive dissolution of NaBiO3, by Mn-II and Ce-III ions are studied as a function of [Mn-II] or [Ce-III], [Bi-III], [H+] and temperature. They fit a simple inverse-cubic rate law and can be readily interpreted using a mechanism in which the rate-determining step is the reaction between an adsorbed reducing species (i.e. a Mn-II or Ce-III ion) and its associated surface site; protonation of the surface site promotes the rate of reaction. The rate of dissolution decreases with increasing initial concentration of Bi-III ions owing to competitive inhibition by the latter species. A kinetic model, based on this mechanism, is applied and provides a quantitative description of the observed kinetics.
KINETIC-STUDY OF THE OXIDATION OF WATER BY CE-4 IONS MEDIATED BY ACTIVATED RUTHENIUM DIOXIDE HYDRATE
Resumo:
The structural, thermal, chemisorptive, and electronic properties of Ce on Pt{111} are studied by photoemission, Auger spectroscopy, scanning tunnel microscope (STM), and low-energy electron diffraction (LEED). Stranski-Krastanov-like growth of low-density Ce layers is accompanied by substantial valence charge transfer from Ce to Pt: in line with this, the measured dipole moment and polarizability of adsorbed Ce at low coverages are 7.2 x 10(-30) C m and similar to 1.3x10(-29) m(3), respectively. Pt-Ce intermixing commences at similar to 400 K and with increasing temperature a sequence of five different ordered surface alloys evolves. The symmetry, periodicities, and rotational epitaxy observed by LEED are in good accord with the STM data which reveal the true complexity of the system. The Various bimetallic surface phases are based on growth of crystalline Pt5Ce, a hexagonal layer structure consisting of alternating layers of Pt2Ce and Kagome nets of Pt atoms. This characteristic ABAB layered arrangement of the surface alloys is clearly imaged, and chemisorption data permit a distinction to be made between the more reactive Pt2Ce layer and the less reactive Pt Kagome net. Either type of layer can appear at the surface as the terminating structure, thicker films exhibiting unit mesh parameters characteristic of the bulk alloy.
Resumo:
Using density functional theory with the inclusion of on-site Coulomb Correction, the O vacancy formation energies of CexZr1-xO2 solid solutions with a series of Ce/Zr ratios are calculated, and a model to understand the results is proposed. It consists of electrostatic and structural relaxation terms, and the latter is found to play a vital role in affecting the O vacancy formation energies. Using this model, several long-standing questions in the field, such as why ceria with 50% ZrO2 usually exhibit the best oxygen storage capacity, can be explained. Some implications of the new interpretation are also discussed.
Resumo:
BaCe1-xYxO3-δ (BCY) and BaCe<sub>0.8-yZryY0.2O3-δ (BCZY) compounds were synthesised via an aqueous sol-gel method and two different calcination processes were tested for BCZY synthesis. The highest hydration capacity was recorded for the compound that contained the highest Y-doping level (x=0.2). Further substitution of Ce<sup>4+ by Zr4+ enhanced the chemical stability especially for y≥0.2, although decreased proton conductivity. However, BaCe<sub>0.6-0.2Zr0.2Y0.2O2.9 (BCZ20Y20) which presented adequate water uptake and high chemical stability in presence of CO2, was found to be the best candidate compound to be used in applications such as electrocatalytic CO2 hydrogenation.