162 resultados para VELOCITY DISPERSION
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The compression of a finite extent Gaussian laser pulse in collisional plasma is investigated. An analytical model is employed to describe the spatiotemporal evolution of a laser pulse propagating through the plasma medium. The pulse geometry is modeled via an appropriate ansatz which takes into account both beam radius (in space) and pulse width (in time). Compression and self-focusing are taken into account via appropriated group velocity dispersion and nonlinearity terms. The competition among the collisional nonlinearity in the plasma and the effect of divergence due to diffraction is pointed out and investigated numerically. Our results suggest that laser pulse compression and intensity localization is enhanced by plasma collisionality. In specific, a pulse width compression by an order of magnitude approximately is observed, for typical collisional laser plasma parameters, along with a significant increase in the intensity.
Resumo:
Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.
Resumo:
The evolution of the amplitude of two nonlinearly interacting waves is considered, via a set of coupled nonlinear Schrödinger-type equations. The dynamical profile is determined by the wave dispersion laws (i.e. the group velocities and the group velocity dispersion terms) and the nonlinearity and coupling coefficients, on which no assumption is made. A generalized dispersion relation is obtained, relating the frequency and wave-number of a small perturbation around a coupled monochromatic (Stokes') wave solution. Explicitly stability criteria are obtained. The analysis reveals a number of possibilities. Two (individually) stable systems may be destabilized due to coupling. Unstable systems may, when coupled, present an enhanced instability growth rate, for an extended wave number range of values. Distinct unstable wavenumber windows may arise simultaneously.
Resumo:
Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide were determined as a function of the alkyl chain length on the cation from 1-propyl- to 1-hexyl- from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally the speed of sound, density and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e. relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.
Resumo:
We compare existing high spectral resolution (R = lambda/Deltalambda similar to 40 000) Ca II Kobservations (lambda(air) = 3933.66 Angstrom) towards 88 mainly B-type stars, and new observations taken using the Intermediate dispersion Spectrograph and Imaging System (ISIS) on the William Herschel Telescope at R similar to 10 000 towards three stars taken from the Palomar-Green Survey, with 21-cm HI emission-line profiles, in order to search for optical absorption towards known intermediate- and high-velocity cloud complexes. Given certain assumptions, limits to the gas phase abundance of Ca II are estimated for the cloud components. We use the data to derive the following distances from the Galactic plane (z). (i) Tentative lower z-height limits of 2800 and 4100 pc towards complex C using lack of absorption in the spectra of HD341617 and PG 0855 + 294, respectively. (ii) A weak lower z-height of 1400 pc towards complex WA-WB using lack of absorption in EC 09470-1433 and a weak lower limit of 2470 pc using lack of absorption in EC 09452-1403. (iii) An upper z- height of 2470 pc towards a southern intermediate- velocity cloud (IVC) with v(LSR) = -55 km s(-1) using PG 2351 + 198. (iv) Detection of a possible IVC in Ca II absorption at v(LSR) = +52 km s(-1) using EC 20104-2944. No associated HI in emission is detected. At this position, normal Galactic rotation predicts velocities of up to similar to+ 25 km s(-1). The detection puts an upper z-height of 1860 pc to the cloud. (v) Tentative HI and Ca II K detections towards an IVC at similar to+70 km s(-1) in the direction of high-velocity cloud (HVC) complex WE, sightline EC 06387-8045, indicating that the IVC may be at a z-height lower than 1770 pc. (vi) Detection of Ca II K absorption in the spectrum of PG 0855 + 294 in the direction of IV20, indicating that this IVC has a z-height smaller than 4100 pc. (vii) A weak lower z-height of 4300 pc towards a small HVC with v(LSR) = +115 km s(-1) at l, b = 200degrees, + 52degrees, using lack of absorption in the Ca II K spectrum of PG 0955 + 291.
Resumo:
We present Ca II K (lambda(air) = 3933.661 angstrom) interstellar observations towards 20 early-type stars, to place lower distance limits to intermediate- and high-velocity clouds (IHVCs) in their lines of sight. The spectra are also employed to estimate the Ca abundance in the low-velocity gas towards these objects, when combined with Leiden-Dwingeloo 21-cm HI survey data of spatial resolution 0 degrees.5. Nine of the stars, which lie towards IHVC complexes H, K and gp, were observed with the intermediate dispersion spectrograph on the Isaac Newton Telescope at a resolution R = lambda/Delta lambda of 9000 (similar to 33 km s(-1)) and signal-to-noise ratio (S/N) per pixel of 75-140. A further nine objects were observed with the Utrecht Echelle Spectrograph on the William Herschel Telescope at R = 40 000 (similar to 7.5 km s(-1)) and S/N per pixel of 10-25. Finally, two objects were observed in both Ca II K and Na I D lines using the 2D COUDE on the McDonald 2.7-m telescope at R = 35 000 (similar to 8.5 km s(-1)). The abundance of Ca II K {log(10)(A) = log(10)[N(Ca II K)]-log(10)[N(HI)]} plotted against HI column density for the objects in the current sample with heights above the Galactic plane (z) exceeding 1000 pc is found to obey the Wakker & Mathis (2000) relation. Also, the reduced column density of Ca II K as function of z is consistent with the larger sample taken from Smoker et al. (2003). Higher S/N observations than those previously taken towards HVC complex H stars HD 13256 and HILT 190 reinforce the assertion that this lies at a distance exceeding 4000 pc. No obvious absorption is detected in observations of ALS 10407 and HD 357657 towards IVC complex gp. The latter star has a spectroscopically estimated distance of similar to 2040 pc, although this was derived assuming the star lies on the main sequence and without any reddening correction being applied. Finally, no Ca II K absorption is detected towards two stars along the line of sight to complex K, namely PG 1610+529 and PG 1710+490. The latter is at a distance of similar to 700 pc, hence placing a lower distance limit to this complex, where previously only an upper distance limit of 6800 pc was available.
Resumo:
A battery of allelic markers at highly polymorphic microsatellite loci was developed and employed to confirm genetically the clonal nature of sibships in nine-banded armadillos. This phenomenon of consistent polyembryony, otherwise nearly unknown among the vertebrates, then was capitalized upon to describe the micro-spatial distributions of numerous clonal sibships in a natural population of armadillos. Adult clonemates were significantly more dispersed than were juvenile sibs, suggesting limited opportunities for altruistic behavioral interactions among mature individuals. These results, and considerations of armadillo natural history, suggest that evolutionary explanations for polyembryony in this species may not reside in the kinds of ecological and kin selection theories relevant to some of the polyembryonic invertebrates. Rather, polyembryony in armadillos may be associated evolutionarily with other reproductive peculiarities of the species, including delayed uterine implantation of a single egg.
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
Reduced arterial compliance precedes changes in blood pressure, which may be mediated through alterations in vessel wall matrix composition. We investigated the effect of the collagen type I-1 gene (COL1A1) +2046G>T polymorphism on arterial compliance in healthy individuals. We recruited 489 subjects (251 men and 238 women; mean age, 22.6±1.6 years). COL1A1 genotypes were determined using polymerase chain reaction and digestion by restriction enzyme Bal1. Arterial pulse wave velocities were measured in 3 segments, aortoiliac (PWVA), aortoradial (PWVB), and aorto-dorsalis-pedis (PWVF), as an index of compliance using a noninvasive optical method. Data were available for 455 subjects. The sample was in Hardy-Weinberg equilibrium with genotype distributions and allele frequencies that were not significantly different from those reported previously. The T allele frequency was 0.22 (95% confidence interval, 0.19 to 0.24). Two hundred eighty-three (62.2%) subjects were genotype GG, 148 (35.5%) subjects were genotype GT, and 24 (5.3%) subjects were genotype TT. A comparison of GG homozygotes with GT and TT individuals demonstrated a statistically significant association with arterial compliance: PWVF 4.92±0.03 versus 5.06±0.05 m/s (ANOVA, P=0.009), PWVB 4.20±0.03 versus 4.32±0.04 m/s (ANOVA, P=0.036), and PWVA 3.07±0.03 versus 3.15±0.03 m/s (ANOVA, P=0.045). The effects of genotype were independent of age, gender, smoking, mean arterial pressure, body mass index, family history of hypertension, and activity scores. We report an association between the COL1A1 gene polymorphism and arterial compliance. Alterations in arterial collagen type 1A deposition may play a role in the regulation of arterial compliance