171 resultados para VEGF secretion

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular insufficiency and retinal ischaemia precede many proliferative retinopathies and stimulate secretion of vasoactive growth factors. Vascular endothelial growth factor (VEGF) plays a major role and we therefore investigated the other members of the VEGF family: Placental growth factor (PlGF), VEGF-B, -C, and -D, and platelet derived growth factors (PDGF) A and B. Neonatal mice were exposed to hyperoxia for 5 days and then returned to room air (resulting in acute retinal ischaemia). RT-PCR demonstrated that all the members of the VEGF family are expressed in the retina and in situ hybridization (ISH) located their mRNAs primarily in ganglion cells. Similarly to VEGF itself, VEGF-C, PDGF-A, and PDGF-B were upregulated during retinal ischaemia (P < 0.05). Only PlGF gene expression increased during hyperoxia (P < 0.01). The expression pattern of these growth factors suggests a role in the normal retina and during vaso-obliterative and ischaemic phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development.

METHODOLOGY/PRINCIPAL FINDINGS: Cathepsin S expression and secretion from endothelial cells was characterised using RT-PCR and western blotting. We further show that cathepsin S promotes pericellular hydrolysis of extracellular matrix components in the tumour microenvironment and facilitates endothelial invasion. The cathepsin S inhibitory antibody, Fsn0503, blocks extracellular proteolysis, inhibiting endothelial invasion and tube formation in cell-based assays. The anti-angiogenic effects of Fsn0503 were also shown in vivo where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.

CONCLUSIONS/SIGNIFICANCE: Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Recent ability to derive endothelial cells (ECs) from induced pluripotent stem (iPS) cells holds a great therapeutic potential for personalised medicine and stem cell therapy. We aimed that better understanding of the complex molecular signals that are evoked during iPS cell differentiation towards ECs may allow specific targeting of their activities to enhance cell differentiation and promote tissue regeneration.

Methods and Results: In this study we have generated mouse iPS cells from fibroblasts using established protocol. When iPS cells were cultivated on type IV mouse collagen-coated dishes in differentiation medium, cell differentiation toward vascular lineages were observed. To study the molecular mechanisms of iPS cell differentiation, we found that miR-199b is involved in EC differentiation. A step-wise increase in expression of miR-199 was detected during EC differentiation. Notably, miR-199b targeted the Notch ligand JAG1, resulting in VEGF transcriptional activation and secretion through the transcription factor STAT3. Upon shRNA-mediated knockdown of the Notch ligand JAG1, the regulatory effect of miR-199b was ablated and there was robust induction of STAT3 and VEGF during EC differentiation. Knockdown of JAG1 also inhibited miR-199b-mediated inhibition of iPS cell differentiation towards SMCs. Using the in vitro tube formation assay and implanted Matrigel plugs, in vivo, miR-199b also regulated VEGF expression and angiogenesis.

Conclusions: This study indicates a novel role for miR-199b as a regulator of the phenotypic switch during vascular cell differentiation derived from iPS cells by regulating critical signaling angiogenic responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucosedependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine Kcells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro(3))GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro(3))GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Nonfasting plasma glucose concentrations were significantly raised (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two major incretin hormones, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP), are currently being considered as prospective drug candidates for treatment of type 2 diabetes. Interest in these gut hormones was initially spurred by their potent insulinotropic activities, but a number of other antihyperglycaemic actions are now established. One of the foremost barriers in progressing GLP-1 and GIP to the clinic concerns their rapid degradation and inactivation by the ubiquitous enzyme, dipeptidyl peptidase IV (DPP IV). Here, we compare the DPP IV resistance and biological properties of Abu(8)/ Abu(2) (2-aminobutyric acid) substituted analogues of GLP-1 and GIP engineered to impart DPP IV resistance. Whereas (Abu(8))GLP-1 was completely stable to human plasma (half-life > 12h), GLP-1, GIP, and (Abu(2))GIP were rapidly degraded (half-lives: 6.2, 6.0, and 7.1 h, respectively). Native GIP, GLP-1, and particularly (Abu(8))GLP-1 elicited significant adenylate cyclase and insulinotropic activity, while (Abu(2))GIP was less effective. Similarly, in obese diabetic (ob/ob) mice, GIP, GLP-1, and (Abu(8))GLP-1 displayed substantial glucose-lowering and insulin -releasing activities, whereas (Abu(2))GIP was only weakly active. These studies illustrate divergent effects of penultimate amino acid Ala(8)/Ala(2) substitution with Abu on the biological properties of GLP-1 and GIP, suggesting that (Abu(8))GLP-1 represents a potential candidate for future therapeutic development. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: This study examined the biological effects of the GIP receptor antagonist, (Pro3)GIP and the GLP-1 receptor antagonist, exendin(9-39)amide.

METHODS: Cyclic AMP production was assessed in Chinese hamster lung fibroblasts transfected with human GIP or GLP-1 receptors, respectively. In vitro insulin release studies were assessed in BRIN-BD11 cells while in vivo insulinotropic and glycaemic responses were measured in obese diabetic ( ob/ ob) mice.

RESULTS: In GIP receptor-transfected fibroblasts, (Pro(3))GIP or exendin(9-39)amide inhibited GIP-stimulated cyclic AMP production with maximal inhibition of 70.0+/-3.5% and 73.5+/-3.2% at 10(-6) mol/l, respectively. In GLP-1 receptor-transfected fibroblasts, exendin(9-39)amide inhibited GLP-1-stimulated cyclic AMP production with maximal inhibition of 60+/-0.7% at 10(-6) mol/l, whereas (Pro(3))GIP had no effect. (Pro(3))GIP specifically inhibited GIP-stimulated insulin release (86%; p<0.001) from clonal BRIN-BD11 cells, but had no effect on GLP-1-stimulated insulin release. In contrast, exendin(9-39)amide inhibited both GIP and GLP-1-stimulated insulin release (57% and 44%, respectively; p<0.001). Administration of (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides (25 nmol/kg body weight, i.p.) to fasted (ob/ob) mice decreased the plasma insulin responses by 42%, 54% and 49%, respectively (p<0.01 to p<0.001). The hyperinsulinaemia of non-fasted (ob/ob) mice was decreased by 19%, 27% and 18% (p<0.05 to p<0.01) by injection of (Pro3)GIP, exendin(9-39)amide or combined peptides but accompanying changes of plasma glucose were small.

CONCLUSIONS/INTERPRETATION: These data show that (Pro(3))GIP is a specific GIP receptor antagonist. Furthermore, feeding studies in one commonly used animal model of obesity and diabetes, (ob/ob) mice, suggest that GIP is the major physiological component of the enteroinsular axis, contributing approximately 80% to incretin-induced insulin release.