6 resultados para Urban heat island
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The ecological footprint is now a widely accepted indicator of sustainable
development. Footprinting translates resource consumption into the land area
required to sustain it, and allows for an average per capita footprint for a region
or nation to be compared with the global average. This paper reports on a project
in which footprints were calculated for two Irish cities, namely Belfast in
Northern Ireland and Limerick in the Republic of Ireland for the year 2001. As
is frequently the case at sub-national scale, data quality and availability were
often problematic, and in general data gaps were filled by means of population
proxies or national averages. A range of methods was applied to convert
resource flows to land areas. Both footprints suggest that the lifestyles of citizens
of the cities use several times more land than their global share, as has been
found for other cities.
Resumo:
Social policy and professional practice across the island of Ireland is dominated by the WHO (2002) definition of elder abuse and national and professional interpretations of what constitutes elder abuse. Top down, generalist knowledge of the abuse of older people have facilitated paternalistic and protectionist policies and services designed to protect older vulnerable adults across the Republic of Ireland (ROI) and Northern Ireland (NI). However a qualitative study involving 58 older people in six focus groups held across Ireland highlights an alternative understanding of elder abuse grounded in the subjective experiences of older people across urban and rural communities on the island. Indigenous ways of knowing offer a broader and more inclusive understanding of the experience of elder abuse (Lafferty 2012; Dow and Joosten 2012) together with opportunities for the prevention of ageism and the empowering of older people across the jurisdictions.
Resumo:
With the increasing utilization of combined heat and power plants (CHP), electrical, gas, and thermal systems are becoming tightly integrated in the urban energy system (UES). However, the three systems are usually planned and operated separately, ignoring their interactions and coordination. To address this issue, the coupling point of different systems in the UES is described by the energy hub model. With this model, an integrated load curtailment method is proposed for the UES. Then a Monte Carlo simulation based approach is developed to assess the reliability of coordinated energy supply systems. Based on this approach, a reliability-optimal energy hub planning method is proposed to accommodate higher renewable energy penetration. Numerical studies indicate that the proposed approach is able to quantify the UES reliability with different structures. Also, optimal energy hub planning scheme can be determined to ensure the reliability of the UES with high renewable penetration.
Resumo:
The destruction caused by tropical cyclone (TC) Pam in March 2015 is considered one of the worst natural disasters in the history of Vanuatu. It has highlighted the need for a better understanding of TC impacts and adaptation in the Southwest Pacific (SWP) region. Therefore, the key aims of this study are to (i) understand local perceptions of TC activity, (ii) investigate impacts of TC activity and (iii) uncover adaptation strategies used to offset the impacts of TCs. To address these aims, a survey (with 130 participants from urban areas) was conducted across three SWP small island states (SISs): Fiji, Vanuatu and Tonga (FVT). It was found that respondents generally had a high level of risk perception and awareness of TCs and the associated physical impacts, but lacked an understanding of the underlying weather conditions. Responses highlighted that current methods of adaptation generally occur at the local level, immediately prior to a TC event (preparation of property, gathering of food, finding a safe place to shelter). However higher level adaptation measures (such as the modification to building structures) may reduce vulnerability further. Finally, we discuss the potential
of utilising weather-related traditional knowledge and nontraditional knowledge of empirical and climate-model-based weather forecasts to improve TC outlooks, which would ultimately reduce vulnerability and increase adaptive capacity. Importantly, lessons learned from this study may result in the modification and/or development of existing adaptation strategies.
Resumo:
An optimal day-ahead scheduling method (ODSM) for the integrated urban energy system (IUES) is introduced, which considers the reconfigurable capability of an electric distribution network. The hourly topology of a distribution network, a natural gas network, the energy centers including the combined heat and power (CHP) units, different energy conversion devices and demand responsive loads (DRLs), are optimized to minimize the day-ahead operation cost of the IUES. The hourly reconfigurable capability of the electric distribution network utilizing remotely controlled switches (RCSs) is explored and discussed. The operational constraints from the unbalanced three-phase electric distribution network, the natural gas network, and the energy centers are considered. The interactions between the electric distribution network and the natural gas network take place through conversion of energy among different energy vectors in the energy centers. An energy conversion analysis model for the energy center was developed based on the energy hub model. A hybrid optimization method based on genetic algorithm (GA) and a nonlinear interior point method (IPM) is utilized to solve the ODSM model. Numerical studies demonstrate that the proposed ODSM is able to provide the IUES with an effective and economical day-ahead scheduling scheme and reduce the operational cost of the IUES.
Resumo:
This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.