38 resultados para Ultimate tensile strength

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents design recommendations for the strength of cold-formed steel angle structs. The work was part funded by the Carnegie Trust and is co-authored by academics from Hong-Kong University. The work has led to a collaboration with the University of Malaya, attempting to predict the strength using artificial neural networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium has good biocompatibility and so its alloys are used as implant materials, but they suffer from having poor wear resistance. This research aims to improve the wear resistance and the tensile strength of titanium alloys potentially for implant applications. Titanium alloys Ti–6Al–4V and Ti–6Al–7Nb were subjected to shotpeening process to study the wear and tensile behavior. An improvement in the wear resistance has been achieved due to surface hardening of these alloys by the process of shotpeening. Surface microhardness of shotpeened Ti–6Al–4V and Ti–6Al–7Nb alloys has increased by 113 and 58 HV(0.5), respectively. After shotpeening, ultimate tensile strength of Ti–6Al–4V increased from 1000 MPa to 1150 MPa, higher than improvement obtained for heat treated titanium specimens. The results confirm that shotpeening pre-treatment improved tensile and sliding wear behavior of Ti–6Al–4V and Ti–6Al–7Nb alloys. In addition, shotpeening increased surface roughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To quantify variability in hand proportioning of zinc phosphate cement among a cohort of dental undergraduates and to determine the effect of any such variability on the diametral tensile strength (DTS) of the set cement. The null hypothesis was that such variability has no effect on DTS. 
Methods: Thirty-four operators dispensed a zinc phosphate cement [Fleck's® Cement] according to the manufacturers' instructions. The mass of powder and liquid dispensed was recorded. Cylindrical specimens (n = 2 x 34) of dimensions 6mm x 3mm were prepared using a stainless steel split mould. The maximum mass of powder and the minimum volume of liquid were used as one extreme ratio and the minimum mass of powder and the maximum volume of liquid used on the other extreme. The manufacturers' recommended ratio was also tested (n=34).The samples were left to set for one hour before being transferred into distilled water for 48 hours. Compression across a diameter was carried out using a universal testing machine, H10KS [Tinius Olsen], at a constant crosshead speed of 0.75 ±0.25 mm/min. Statistical analyses (α = 0.05) were by Student's t-test for the powder/liquid ratio and one-way ANOVA and Tukey HSD for for pair-wise comparisons of mean DTS. Tests were carried out for normality and constant variability. 
Results: The mean (range) amount of powder dispensed was 0.863g (0.531-1.216)g. The mean (range) amount of liquid dispensed was 0.341ml (0.265-0.394)ml. The manufacturer's recommended amounts were 0.8g of powder and 0.3ml of liquid. The mean powder/liquid ratio was not significantly different from the manufacturer's recommended value (p=0.64). Mean (SD) DTS were (MPa) max: 7.19(1.50), min: 2.65(1.01), manufacturer: 6.01(1.30). All pair-wise comparisons were significantly different (p<0.001). 
Conclusions: Variability exists in the hand proportioning powder and liquid components of zinc phosphate cement. This variability can affect the DTS of zinc phosphate cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the physicochemical properties and in vitro resistance to encrustation of solvent cast films composed of either poly(epsilon-caprolactone) (PCL), prepared using different ratios of high (50,000) to low (4000) (molecular weight) m.wt., or blends of PCL and the polymeric antimicrobial complex, poly(vinylpyrrolidone)-iodine (PVP-I). The incorporation of PVP-I offered antimicrobial activity to the biomaterials. Films were characterised in terms of mechanical (tensile analysis, dynamic mechanical thermal analysis) and surface properties (dynamic contact angle analysis, scanning electron microscopy), whereas degradation (at 37degreesC in PBS at pH 7.4) was determined gravimetrically. The resistance of the films to encrustation was evaluated using an in vitro encrustation model. Reductions in the ratio of high:low-m.wt. PCL significantly reduced the ultimate tensile strength, % elongation at break and the advancing contact angle of the films. These effects were attributed to alterations in the amorphous content and the more hydrophilic nature of the films. Conversely, there were no alterations in Young's modulus, the viscoelastic properties and glass-transition temperature. Incorporation of PVP-I did not affect the mechanical or rheological properties of the films, indicative of a limited interaction between the two polymers in the solid state. Manipulation of the high:low m.wt. ratio of PCL significantly altered the degradation of the films, most notably following longer immersion periods, and resistance to encrustation. Accordingly, maximum degradation and resistance to encrustation was observed with the biomaterial composed of 40:60 high:low m.wt. ratios of PCL; however, the mechanical properties of this system were considered inappropriate for clinical application. Films composed of either 50:50 or 60:40 ratio of high:low m.wt. PCL offered an appropriate compromise between physicochemical properties and resistance to encrustation. This study has highlighted the important usefulness of degradable polymer systems as ureteral biomaterials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An artificial neural network (ANN) model is developed for the analysis and simulation of the correlation between the properties of maraging steels and composition, processing and working conditions. The input parameters of the model consist of alloy composition, processing parameters (including cold deformation degree, ageing temperature, and ageing time), and working temperature. The outputs of the ANN model include property parameters namely: ultimate tensile strength, yield strength, elongation, reduction in area, hardness, notched tensile strength, Charpy impact energy, fracture toughness, and martensitic transformation start temperature. Good performance of the ANN model is achieved. The model can be used to calculate properties of maraging steels as functions of alloy composition, processing parameters, and working condition. The combined influence of Co and Mo on the properties of maraging steels is simulated using the model. The results are in agreement with experimental data. Explanation of the calculated results from the metallurgical point of view is attempted. The model can be used as a guide for further alloy development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports the physicochemical and drug diffusion properties of rifampicin containing poly(epsilon-caprolactone) (PCL)/polyethylene glycol (PEG) networks, designed as bioactive biomaterials. Uniquely, the effects of the states of both rifampicin and PEG and the interplay between these components on these properties are described. PCL matrices containing rifampicin (1-5%, w/w) and PEG 200 (0-15%, w/w) were prepared by casting from an organic solvent (dichloromethane). The films were subsequently characterized in terms of their thermal/thermorheological, surface and tensile properties, biodegradation and drug diffusion/release properties. Incorporation of PEG and/or rifampicin significantly affected the tensile and surface properties of PCL, lowering the ultimate tensile strength, % elongation at break, Young modulus and storage and loss moduli. Both in the absence and presence of PEG, solubilisation of rifampicin within the crystalline domains of PCL was observed. PEG was present as a dispersed liquid phase. The release of rifampicin (3% loading) was unaffected by the presence of PEG. Similarly the release of rifampicin (5%) was unaffected by low concentrations of PEG (5-10%) however, at higher loadings, the release rate of rifampicin was enhanced by the presence of PEG. Rifampicin release (10% loading) was enhanced by the presence of PEG in a concentration dependent fashion. These observations were accredited to enhanced porosity of the matrix. In all cases, diffusion-controlled release of rifampicin occurred which was unaffected by polymer degradation. This study has uniquely illustrated the effect of hydrophilic pore formers on the physicochemical properties of PCL. Interestingly, enhanced diffusion controlled release was only observed from biomaterials containing high loadings of PEG and rifampicin (5, 10%), concentrations that were shown to affect the mechanical properties of the biomaterials. Care should therefore be shown when adopting this strategy to enhance release of bioactive agents from biomaterials. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoresponsive polymeric platforms are used to optimise drug delivery in pharmaceutical systems and bioactive medical devices. However, the practical application of these systems is compromised by their poor mechanical properties. This study describes the design of thermoresponsive semi-interpenetrating polymer networks (s-IPNs) based on cross-linked p(NIPAA) or p(NIPAA-co-HEMA) hydrogels containing poly(e-caprolactone) designed to address this issue. Using DSC, the lower critical solution temperature of the co-polymer and p(NIPAA) matrices were circa 34 °C and 32 °C, respectively. PCL was physically dispersed within the hydrogel matrices as confirmed using confocal scanning laser microscopy and DSC and resulted in marked changes in the mechanical properties (ultimate tensile strength, Young's modulus) without adversely compromising the elongation properties. P(NIPAA) networks containing dispersed PCL exhibited thermoresponsive swelling properties following immersion in buffer (pH 7), with the equilibrium-swelling ratio being greater at 20 °C than 37 °C and greatest for p(NIPAA)/PCL systems at 20 °C. The incorporation of PCL significantly lowered the equilibrium swelling ratio of the various networks but this was not deemed practically significant for s-IPNs based on p(NIPAA). Thermoresponsive release of metronidazole was observed from s-IPN composed of p(NIPAA)/PCL at 37 °C but not from p(NIPAA-co-HEMA)/PCL at this temperature. In all other platforms, drug release at 20 °C was significantly similar to that at 37 °C and was diffusion controlled. This study has uniquely described a strategy by which thermoresponsive drug release may be performed from polymeric platforms with highly elastic properties. It is proposed that these materials may be used clinically as bioactive endotracheal tubes, designed to offer enhanced resistance to ventilator associated pneumonia, a clinical condition associated with the use of endotracheal tubes where stimulus responsive drug release from biomaterials of significant mechanical properties would be advantageous. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behavior of microfibrilar composites (MFC), consisting of a matrix of high-density polyethylene (HDPE) and reinforcement of polyamide 6 (PA6) fibrils, with and without compatibilization, was studied. The composites were produced by conventional processing techniques with various shape and arrangement of the PA6 reinforcing entities: long, unidirectional, or crossed bundles of fibrils (UDP and CPC, respectively), middle-length, randomly oriented bristles (MRB), or non-oriented micrometric PA6 spheres (NOM). The tensile, flexural, and impact properties of the MFC materials (UDP, CPC, and MRB) were determined as a function of the PA6 reinforcement shape, alignment and content, and compared with those of NOM, the non-fibrous composite. It was concluded that the in-situ MFC materials based on HDPE/PA6 blends display improvements in the mechanical behavior when compared with the neat HDPE matrix, e.g., up to 33% for the Young modulus, up to 119% for the ultimate tensile strength, and up to 80% for the flexural stiffness. Copyright © 2011 Society of Plastics Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel strategy for the prevention of ventilator-associatedpneumonia that involves coating poly(vinyl chloride, PVC) endotracheal tubes (ET) withhydrogels that may be subsequently used to entrap nebulized antimicrobial solutions. Candidatehydrogels were prepared containing a range of ratios of hydroxyethyl methacrylate (HEMA) andmethacrylic acid (MAA) from 100:0 to 70:30 using free radical polymerization and, whenrequired, simultaneous attachment to PVC was performed. The mechanical properties, glasstransition temperatures, swelling kinetics, uptake of gentamicin from an aqueous medium, andgentamicin release were characterized. Increasing the MAA content of the hydrogels significantlydecreased the ultimate tensile strength, % elongation at break, Young’s modulus, and increasedthe glass transition temperature, the swelling ratio, and gentamicin uptake. Microbial(Staphylococcus aureus and Pseudomonas aeruginosa) adherence to control (drug-free) hydrogelswas observed; however, while adherence to gentamicin-containing p(HEMA) occurred, noadherence occurred to gentamicin-containing HEMA:MAA copolymers. Antimicrobialpersistence of gentamicin-containing hydrogels was examined by determining the zone ofinhibition against each microorganism on successive days. Hydrogel composition affected the observed antimicrobial persistence,with the hydrogel composed of 70:30 HEMA:MAA exhibiting >20 days persistence against S. aureus and P. aeruginosa,respectively. To simulate clinical use, the hydrogels (coated onto PVC) were first exposed to a nebulized solution of gentamicin(4 mL, 80 mg for 20 min), and then to nebulized bacteria (4 mL ca. 1 × 109 colony forming units mL−1, 30 min). Viable bacteriawere not observed on the gentamicin-treated p(HEMA: MAA) copolymers, whereas growth was observed on gentamicin-treatedp(HEMA). In light of the excellent antimicrobial activity and physicochemical properties, p(HEMA: MAA) copolymerscomposed of ratios of 80:20 or 70:30 HEMA: MAA were identified as potentially useful coatings of endotracheal tubes to be usedin conjunction with the clinical nebulization of gentamicin and designed for the prevention of ventilator-associated pneumonia

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This limited experimental investigation examined the relationships between the compressive strengths of cubes, cylinders, cores and the estimated compressive strengths derived from pull-off tests for a relatively low-strength structural-grade concrete (<35 N/mm2). Test specimens were cast and tested at 7, 14, 28, 56 and 84 days. The relationships of the trends of the test results to the trends of results of standard cube specimens and standard cylinder specimens were compared. It was found that the mean strength of each type of specimen tended to increase as a function of the natural logarithm of the specimen age. The mean strength of cylinders of length/diameter ratio 2.0 was found to be slightly greater (by about 7.5%) than the generally accepted value of 80% of the mean cube strength. Core results were corrected using correction factors defined in BS 6089 and the UK national annex to BS EN 12504-1. The mean corrected cube strength of cores taken from cubes was approximately 12% greater than the mean companion cube strength. The mean corrected cylinder strength of cores taken from cubes was approximately 5% greater than the mean companion cylinder strength. The potential cube and cylinder strengths of cores taken from slabs cured under different environmental conditions correlated well with companion cube and cylinder strengths respectively at 28 days. The pull-off test results gave a variable but, on average, slightly conservative estimate of the cube compressive strength of the relatively low-strength structural-grade concrete, using a simple general linear estimated compressive cube strength to tensile strength correlation factor of 10.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim. To investigate (a) variability in powder/liquid proportioning and (b) effect of variability on diametral tensile strength (DTS), in a zinc phosphate cement. Statistical analyses (α = 0.05) were by Student's t-test in the case of powder/liquid ratio and one-way ANOVA and Tukey HSD for pair-wise comparisons of mean DTS. The Null hypotheses were that (a) the powder-liquid mixing ratios would not differ from the manufacturer's recommended ratio (b) DTS of the set cement samples using the extreme powder/liquid ratios would not differ from those made using the recommended ratio. 

Methodology. 34 dental students dispensed the components according to the manufacturer's instructions. The maximum and minimum powder/liquid ratios, together with the manufacturer's recommended ratio, were used to prepare samples for DTS testing. 

Results. Powder/liquid ratios ranged from 2.386 to 1.018. The mean ratio (1.644) was not significantly different from the recommended value of 1.718 (P = 0.189). DTS values for the maximum and minimum ratios were both significantly different from each other (P < 0.001) and from the mean value obtained from the recommended ratio (P < 0.001). 

Conclusions. Variability exists in powder/liquid ratio for hand dispensed zinc phosphate cement. This variability can affect the DTS of the set material.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This short communication presents a research update of a new low nickel maraging steel, Fe–12.94%Ni–1.61%Al–1.01%Mo–0.23%Nb (wt%). Its yield stress and the tensile strength are 1080 MPa and 1180 MPa, respectively, after ageing treatment. Tensile specimens show ductile fracture. Fractography demonstrated deep dimples. Impact energy is 22 J on half-size specimens.