31 resultados para Transmission Electron-microscopy
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This article compares and contrasts information
obtained, using transmission electron microscopy (TEM)
and piezo-force microscopy (PFM), on domain configurations
adopted in single crystal lamellae of BaTiO3, that had
been cut directly from bulk using a focused ion beam
microscope with top and bottom surfaces parallel to
{100}pseudocubic. Both forms of imaging reveal domain
walls parallel to {110}pseudocubic, consistent with sets of 90
domains with dipoles oriented parallel to the two
\001[pseudocubic directions in the plane of the lamellae.
However, the domain width was observed to be dramatically
larger using PFM than it was using TEM. This suggests
significant differences in the surface energy densities
that drive the domain formation in the first place, that could
relate to differences in the boundary conditions in the two
modes of imaging (TEM samples are imaged under high
vacuum, whereas PFM imaging was performed in air).
Attempts were made to map local dipole orientations
directly, using a form of ‘vector’ PFM. However, information
inferred was largely inconsistent with the known
crystallography of the samples, raising concern about the
levels of care needed for accurate interpretation of PFM
images.
Resumo:
Here we describe the development of the MALTS software which is a generalized tool that simulates Lorentz Transmission Electron Microscopy (LTEM) contrast of magnetic nanostructures. Complex magnetic nanostructures typically have multiple stable domain structures. MALTS works in conjunction with the open access micromagnetic software Object Oriented Micromagnetic Framework or MuMax. Magnetically stable trial magnetization states of the object of interest are input into MALTS and simulated LTEM images are output. MALTS computes the magnetic and electric phases accrued by the transmitted electrons via the Aharonov-Bohm expressions. Transfer and envelope functions are used to simulate the progression of the electron wave through the microscope lenses. The final contrast image due to these effects is determined by Fourier Optics. Similar approaches have been used previously for simulations of specific cases of LTEM contrast. The novelty here is the integration with micromagnetic codes via a simple user interface enabling the computation of the contrast from any structure. The output from MALTS is in good agreement with both experimental data and published LTEM simulations. A widely-available generalized code for the analysis of Lorentz contrast is a much needed step towards the use of LTEM as a standardized laboratory technique.
Resumo:
In this paper we investigate the piezoelectric properties of PbTiO(3) thin films grown by pulsed laser deposition with piezoresponse force microscopy and transmission electron microscopy. The as-grown films exhibit an upward polarization, inhomogeneous distribution of piezoelectric characteristics concerning local coercive fields, and piezoelectric coefficient. In fact, the data obtained reveal imprints during piezoresponse force microscopy measurements, nonlinearity in the piezoelectric deformation, and limited polarization reversal. Moreover, transmission electron microscopy shows the presence of defects near the film/substrate interface, which can be associated with the variations of piezoelectric properties.