9 resultados para Transesterification

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural dolomitic rock has been investigated in the transesterification of C-4 and C-8 triglycerides and olive oil with a view to determining its viability as a solid base catalyst for use in biodiesel synthesis. XRD reveals that the dolomitic rock comprised 77% dolomite and 23% magnesian calcite. The generation of basic sites requires calcination at 900 degrees C, which increases the surface area and transforms the mineral into MgO nanocrystallites dispersed over CaO particles. Calcined dolomitic rock exhibits high activity towards the liquid phase transesterification of glyceryl tributyrate and trioctanoate, and even olive oil, with methanol for biodiesel production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

KF, LiF and CsF/A(2)O(3) catalysts with different loadings from 1 to 20 wt% were prepared using aqueous solutions of the alkaline fluoride compounds by wet impregnation of basic mesoporous MSU-type alumina. The catalysts were activated under At at 400 degrees C for 2 h and monitored by in situ XRD measurements. The catalysts were also characterized using several techniques: N-2 adsorption/desorption isotherms at -196 degrees C, FTIR, DR-UV-vis, CO2-TPD, XRD, Al-27 CP/MAS NMR. These characterizations led to the conclusion that the deposition of alkaline fluorides on the alumina surface generates fluoroaluminates and aluminate species. The process is definitivated at 400 degrees C. The fluorine in these structures is less basic than in the parent fluorides, but the oxygen becomes more basic. The catalysts were tested for the transesterification of fatty esters under different experimental conditions using conventional heating, microwave and Ultrasound irradiation. Recycling experiments showed that these catalysts are stable for a limited number of cycles. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity and nature (i e heterogeneous and/or homogeneous) of catalysts based on CsF supported on alpha-Al2O3 were investigated for the transesterification of vegetable oil with methanol. The effect of the activation temperature, CsF loading and the reusability in a recirculating reactor were first studied CsF/alpha-Al2O3 exhibited the highest activity for a CsF loading of 0 6 mmol/g and when activated at 120 degrees C An important aspect of this study is the effect of CsF leaching into the reaction mixture, which is attributed to the high solubility of CsF in methanol, leading to a complete loss of activity after one run It was Identified that the activity of the catalyst resulted from a synergy between alumina and dissolved CsF, the presence of both compounds being absolutely necessary to observe any conversion The use of an alumina with a higher surface area resulted in a far greater reaction rate, showing that the concentration of surface site on the oxide (probably surface hydroxyl) was rate-limiting in the case of the experiments using the low surface area alpha-Al2O3 This work emphasizes that combined homogeneous-heterogeneous catalytic systems made from the blending of the respective catalysts can be used to obtain high conversion of vegetable oil to biodiesel. Despite the homogeneous/heterogeneous dual character, such a catalytic system may prove valuable in developing a simple and cost-effective continuous catalytic process for biodiesel production (C) 2010 Elsevier B V All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uridine-3'-phosphorothiolate triesters bearing lipophilic moieties were prepared via Michaelis-Arbuzov chemistry. Subsequent deprotection of the S-cholesteryl phosphorothiolate triester afforded the corresponding diester which underwent spontaneous Cyclization to cleanly afford uridine 2',3'-cyclic phosphate. This transesterification reaction could be expedited by treatment with iodine under mild, neutral conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein TrwC is the conjugative relaxase responsible for DNA processing in plasmid R388 bacterial conjugation. TrwC has two catalytic tyrosines, Y18 and Y26, both able to carry out cleavage reactions using unmodified oligonucleotide substrates. Suicide substrates containing a 30-Sphosphorothiolate linkage at the cleavage site displaced TrwC reaction towards covalent adducts and thereby enabled intermediate steps in relaxase reactions to be investigated. Two distinct covalent TrwC–oligonucleotide complexes could be separated from noncovalently bound protein by SDS–PAGE. As observed by mass spectrometry, one complex contained a single, cleaved oligonucleotide bound to Y18, whereas the other contained two cleaved oligonucleotides, bound to Y18 and Y26. Analysis of the cleavage reaction using suicide substrates and Y18F or Y26F mutants showed that efficient Y26 cleavage only occurs after Y18 cleavage. Strand-transfer reactions carried out with the isolated Y18–DNA complex allowed the assignment of specific roles to each tyrosine. Thus, only Y18 was used for initiation. Y26 was specifically used in the second transesterification that leads to strand transfer, thus catalyzing the termination reaction that occurs in the recipient cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme involved in lipoprotein metabolism. It mediates the transesterification of free cholesterol to cholesteryl ester in an apoprotein A-I-dependent process. We have isolated purified LCAT from human plasma using anion-exchange chromatography and characterized the extracted LCAT in terms of its molecular weight, molar absorption coefficient, and enzymatic activity. The participation of LCAT in the oxidation of very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) was examined by supplementing lipoproteins with exogenous LCAT over a range of protein concentrations. LCAT-depleted lipoproteins were also prepared and their oxidation kinetics examined. Our results provide evidence for a dual role for LCAT in lipoprotein oxidation, whereby it acts in a dose-responsive manner as a potent pro-oxidant during VLDL oxidation, but as an antioxidant during LDL oxidation. We believe this novel pro-oxidant effect may be attributable to the LCAT-mediated formation of oxidized cholesteryl ester in VLDL, whereas the antioxidant effect is similar to that of chain-breaking antioxidants. Thus, we have demonstrated that the high-density lipoprotein-associated enzyme LCAT may have a significant role to play in lipoprotein modification and hence atherogenesis. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preparation of cellulose-polyamine composite films and beads, which provide high loading of primary amines on the surface allowing direct one-step bioconjugation of active species, is reported using an ionic liquid (IL) dissolution and regeneration process. Films and bead architectures were prepared and used as immobilization supports for laccase as a model system demonstrating the applicability of this approach. Performance of these materials, compared to commercially available products, has been assessed using millimeter-sized beads of the composites and the lipase-catalyzed transesterification of ethyl butyrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knowledge of the chemical stability as a function of the temperature of ionic liquids (ILs) in the presence of other molecules such as water is crucial prior to developing any no GO industrial application and process involving these novel materials. Fluid phase equilibria and density over a large range of temperature and composition can give basic information on IL purity and chemical stability. The IL scientific community requires accurate measurements accessed from reference data. In this work, the stability of different alkyl sulfate-based ILs in the presence of water and various alcohols (methanol, ethanol, 1-butanol, and 1-octanol) was investigated to understand their stability as a function of temperature up to 423.15 K over the hydrolysis and transesterification reactions, respectively. From this investigation, it was clear that methyl sulfate- and ethyl sulfate-based ILs are not stable in the presence of water, since hydrolysis of the methyl sulfate or ethyl sulfate anions to methanol or ethanol and hydrogenate anion is undoubtedly observed. Such observations could help to explain the differences observed for the physical properties published in the literature by various groups. Furthermore, it appears that a thermodynamic equilibrium process drives these hydrolysis reactions. In other words, these hydrolysis reactions are in fact reversible, providing the possibility to re-form the desired alkyl sulfate anions by a simple transesterification reaction between hydrogen sulfate-based ILs and the corresponding alcohol (methanol or ethanol). Additionally, butyl sulfate- and octyl sulfate-based ILs appear to follow this pattern but under more drastic conditions. In these systems, hydrolysis is observed in both cases after several months for temperatures up to 423 K in the presence of water. Therein, the partial miscibility of hydrogen sulfate-based ILs with long chain alcohols (1-butanol and 1-octanol) can help to explain the enhanced hydrolytic stability of the butyl sulfate- and octyl sulfate-based ILs compared with the methyl or ethyl sulfate systems. Additionally, rapid transesterification reactions are observed during liquid-liquid equilibrium studies as a function of temperature for binary systems of (hydrogen sulfate-based ionic liquids + 1-butanol) and of (hydrogen sulfate-based ionic liquids + 1-octanol). Finally, this atom-efficient catalyst-free transesterification reaction between hydrogen sulfate-based ILs and alcohol was then tested to provide a novel way to synthesize new ILs with various anion structures containing the alkyl sulfate group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53–0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42–0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality.