24 resultados para Tracking performance
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
We present a multimodal detection and tracking algorithm for sensors composed of a camera mounted between two microphones. Target localization is performed on color-based change detection in the video modality and on time difference of arrival (TDOA) estimation between the two microphones in the audio modality. The TDOA is computed by multiband generalized cross correlation (GCC) analysis. The estimated directions of arrival are then postprocessed using a Riccati Kalman filter. The visual and audio estimates are finally integrated, at the likelihood level, into a particle filter (PF) that uses a zero-order motion model, and a weighted probabilistic data association (WPDA) scheme. We demonstrate that the Kalman filtering (KF) improves the accuracy of the audio source localization and that the WPDA helps to enhance the tracking performance of sensor fusion in reverberant scenarios. The combination of multiband GCC, KF, and WPDA within the particle filtering framework improves the performance of the algorithm in noisy scenarios. We also show how the proposed audiovisual tracker summarizes the observed scene by generating metadata that can be transmitted to other network nodes instead of transmitting the raw images and can be used for very low bit rate communication. Moreover, the generated metadata can also be used to detect and monitor events of interest.
Resumo:
A scale invariant feature transform (SIFT) based mean shift algorithm is presented for object tracking in real scenarios. SIFT features are used to correspond the region of interests across frames. Meanwhile, mean shift is applied to conduct similarity search via color histograms. The probability distributions from these two measurements are evaluated in an expectation–maximization scheme so as to achieve maximum likelihood estimation of similar regions. This mutual support mechanism can lead to consistent tracking performance if one of the two measurements becomes unstable. Experimental work demonstrates that the proposed mean shift/SIFT strategy improves the tracking performance of the classical mean shift and SIFT tracking algorithms in complicated real scenarios.
Resumo:
In human motion analysis, the joint estimation of appearance, body pose and location parameters is not always tractable due to its huge computational cost. In this paper, we propose a Rao-Blackwellized Particle Filter for addressing the problem of human pose estimation and tracking. The advantage of the proposed approach is that Rao-Blackwellization allows the state variables to be splitted into two sets, being one of them analytically calculated from the posterior probability of the remaining ones. This procedure reduces the dimensionality of the Particle Filter, thus requiring fewer particles to achieve a similar tracking performance. In this manner, location and size over the image are obtained stochastically using colour and motion clues, whereas body pose is solved analytically applying learned human Point Distribution Models.
Resumo:
This letter presents novel behaviour-based tracking of people in low-resolution using instantaneous priors mediated by head-pose. We extend the Kalman Filter to adaptively combine motion information with an instantaneous prior belief about where the person will go based on where they are currently looking. We apply this new method to pedestrian surveillance, using automatically-derived head pose estimates, although the theory is not limited to head-pose priors. We perform a statistical analysis of pedestrian gazing behaviour and demonstrate tracking performance on a set of simulated and real pedestrian observations. We show that by using instantaneous `intentional' priors our algorithm significantly outperforms a standard Kalman Filter on comprehensive test data.
Resumo:
The pressure and velocity field in a one-dimensional acoustic waveguide can be sensed in a non-intrusive manner using spatially distributed microphones. Experimental characterization with sensor arrangements of this type has many applications in measurement and control. This paper presents a method for measuring the acoustic variables in a duct under fluctuating propagation conditions with specific focus on in-system calibration and tracking of the system parameters of a three-microphone measurement configuration. The tractability of the non-linear optimization problem that results from taking a parametric approach is investigated alongside the influence of extraneous measurement noise on the parameter estimates. The validity and accuracy of the method are experimentally assessed in terms of the ability of the calibrated system to separate the propagating waves under controlled conditions. The tracking performance is tested through measurements with a time-varying mean flow, including an experiment conducted under propagation conditions similar to those in a wind instrument during playing.
Resumo:
Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.
Resumo:
The range of potential applications for indoor and campus based personnel localisation has led researchers to create a wide spectrum of different algorithmic approaches and systems. However, the majority of the proposed systems overlook the unique radio environment presented by the human body leading to systematic errors and inaccuracies when deployed in this context. In this paper RSSI-based Monte Carlo Localisation was implemented using commercial 868 MHz off the shelf hardware and empirical data was gathered across a relatively large number of scenarios within a single indoor office environment. This data showed that the body shadowing effect caused by the human body introduced path skew into location estimates. It was also shown that, by using two body-worn nodes in concert, the effect of body shadowing can be mitigated by averaging the estimated position of the two nodes worn on either side of the body. © Springer Science+Business Media, LLC 2012.
Resumo:
Indoor personnel localization research has generated a range of potential techniques and algorithms. However, these typically do not account for the influence of the user's body upon the radio channel. In this paper an active RFID based patient tracking system is demonstrated and three localization algorithms are used to estimate the location of a user within a modern office building. It is shown that disregarding body effects reduces the accuracy of the algorithms' location estimates and that body shadowing effects create a systematic position error that estimates the user's location as closer to the RFID reader that the active tag has line of sight to.
Resumo:
The least-mean-fourth (LMF) algorithm is known for its fast convergence and lower steady state error, especially in sub-Gaussian noise environments. Recent work on normalised versions of the LMF algorithm has further enhanced its stability and performance in both Gaussian and sub-Gaussian noise environments. For example, the recently developed normalised LMF (XE-NLMF) algorithm is normalised by the mixed signal and error powers, and weighted by a fixed mixed-power parameter. Unfortunately, this algorithm depends on the selection of this mixing parameter. In this work, a time-varying mixed-power parameter technique is introduced to overcome this dependency. A convergence analysis, transient analysis, and steady-state behaviour of the proposed algorithm are derived and verified through simulations. An enhancement in performance is obtained through the use of this technique in two different scenarios. Moreover, the tracking analysis of the proposed algorithm is carried out in the presence of two sources of nonstationarities: (1) carrier frequency offset between transmitter and receiver and (2) random variations in the environment. Close agreement between analysis and simulation results is obtained. The results show that, unlike in the stationary case, the steady-state excess mean-square error is not a monotonically increasing function of the step size. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Over recent years there have been substantial efforts to record and interpret the post-nesting movements of leatherback turtles (Dermochelys coriacea) breeding in tropical regions. Less well documented are the movements undertaken by individual turtles during the breeding season itself, or more specifically between sequential nesting events. Such movements are of interest for two reasons: (1) gravid female leatherbacks may range extensively into the territorial waters and nesting beaches of neighbouring countries, raising questions for conservationists and population ecologists; and (2) the magnitude of movements themselves help elucidate underlying reproductive strategies (e.g. whether to rest near to the nesting or forage extensively). Here, satellite relay data loggers are used (SRDLs) to detail the movements and behaviour of two female leatherback turtles throughout three consecutive inter-nesting intervals in the Commonwealth of Dominica, West Indies. Both near-shore residence and extensive inter-nesting movements were recorded, contrasting previous studies, with movements away from the nesting beach increasing towards the end of the nesting season. Using this behavioural study as a backdrop, the suitability of attaching satellite transmitters directly to the carapace was additionally explored as an alternative approach to conventional harness deployments. Specifically, the principal aims were to (1) gather empirical data on speed of travel and (2) assess dive performance (aerobic dive limit) to enable comparisons with turtles previously fitted with harnesses elsewhere in the Caribbean (n = 6 turtles; Grenada, WI). This produced mixed results with animals bearing directly attached transmitters travelling significantly faster (55.21 km day(-1): SD 6.68) than harnessed individuals (39.80 km day(-1); SD 6.19); whilst no discernable difference in dive performance could be found between the two groups of study animals. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we propose a statistical model for detection and tracking of human silhouette and the corresponding 3D skeletal structure in gait sequences. We follow a point distribution model (PDM) approach using a Principal Component Analysis (PCA). The problem of non-lineal PCA is partially resolved by applying a different PDM depending of pose estimation; frontal, lateral and diagonal, estimated by Fisher's linear discriminant. Additionally, the fitting is carried out by selecting the closest allowable shape from the training set by means of a nearest neighbor classifier. To improve the performance of the model we develop a human gait analysis to take into account temporal dynamic to track the human body. The incorporation of temporal constraints on the model increase reliability and robustness.
Resumo:
Handling appearance variations is a very challenging problem for visual tracking. Existing methods usually solve this problem by relying on an effective appearance model with two features: (1) being capable of discriminating the tracked target from its background, (2) being robust to the target's appearance variations during tracking. Instead of integrating the two requirements into the appearance model, in this paper, we propose a tracking method that deals with these problems separately based on sparse representation in a particle filter framework. Each target candidate defined by a particle is linearly represented by the target and background templates with an additive representation error. Discriminating the target from its background is achieved by activating the target templates or the background templates in the linear system in a competitive manner. The target's appearance variations are directly modeled as the representation error. An online algorithm is used to learn the basis functions that sparsely span the representation error. The linear system is solved via ℓ1 minimization. The candidate with the smallest reconstruction error using the target templates is selected as the tracking result. We test the proposed approach using four sequences with heavy occlusions, large pose variations, drastic illumination changes and low foreground-background contrast. The proposed approach shows excellent performance in comparison with two latest state-of-the-art trackers.