88 resultados para THORACIC AORTA
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.
Resumo:
increasing evidence from both clinical and experimental studies indicates that the insulin-releasing hormone, glucagon-like peptide-1 (GLP-1) may exert additional protective/reparative effects on the cardiovascular system. The aim of this study was to examine vasorelaxant effects of GLP-1(7-36)amide, three structurally-related peptides and a non-peptide GLP-1 agonist in rat aorta. Interestingly, all GLP-1 compounds, including the established GLP-1 receptor antagonist, exendin (9-39) caused concentration-dependent relaxation. Mechanistic studies employing hyperpolarising concentrations of potassium or glybenclamide revealed that these relaxant effects are mediated via specific activation of ATP-sensitive potassium channels. Further experiments using a specific membrane-permeable cyclic AMP (cAMP) antagonist, and demonstration of increased cAMP production in response to GLP-1 illustrated the critical importance of this pathway. These data significantly extend previous observations suggesting that GLP-1 may modulate vascular function, and indicate that this effect may be mediated by the GLP-1 receptor. However, further studies are required in order to establish whether GLP-1 related agents may confer additional cardiovascular benefits to diabetic patients. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Refractory asthma represents a significant unmet clinical need. Data from a national online registry audited clinical outcome in 349 adults with refractory asthma from four UK specialist centres in the British Thoracic Society Difficult Asthma Network. At follow-up, lung function improved, with a reduction in important healthcare outcomes, specifically hospital admission, unscheduled healthcare visits and rescue courses of oral steroids. The most frequent therapeutic intervention was maintenance oral corticosteroids and most steroid sparing agents (apart from omalizumab) demonstrated minimal steroid sparing benefit. A significant unmet clinical need remains in this group, specifically a requirement for therapies which reduce systemic steroid exposure.
Resumo:
BACKGROUND: Obesity has emerged as a risk factor for the development of asthma and it may also influence asthma control and airways inflammation. However, the role of obesity in severe asthma remains unclear. OBJECTIVE: To explore the association between obesity (defined by BMI) and severe asthma. METHODS: Data from the National Registry for dedicated UK Difficult Asthma Services were used to compare patient demographics, disease characteristics and healthcare utilisation between three body mass index (BMI) categories (normal weight: 18.5 -24.99, overweight: 25 -29.99, obese: =30) in a well characterised group of severe asthmatic adults. RESULTS: The study population consisted of 666 severe asthmatics with a median BMI of 29.8 (interquartile range 22.5 -34.0). The obese group exhibited greater asthma medication requirements in terms of maintenance corticosteroid therapy (48.9% versus 40.4% and 34.5% in the overweight and normal weight groups, respectively), steroid burst therapy and short-acting ß2-agonist (SABA) use per day. Significant differences were seen with gastro-oesophageal reflux disease (GORD) (53.9% versus 48.1% and 39.7% in the overweight and normal weight groups, respectively) and proton pump inhibitor (PPI) use. Bone density scores were higher in the obese group, whilst pulmonary function testing revealed a reduced FVC and raised Kco. Serum IgE levels decreased with increasing BMI and the obese group were more likely to report eczema, but less likely to have a history of nasal polyps. CONCLUSIONS: Severe asthmatics display particular characteristics according to BMI that support the view that obesity associated severe asthma may represent a distinct clinical phenotype.1Royal Brompton Hospital, London, UK;2Department of Computing, Imperial College, UK3Airways Disease, National Heart & Lung Institute, Imperial College, UK;4Centre for infection and immunity, Queen's University of Belfast, UK;5University of Leicester, UK;6The University of Manchester and University Hospital of South Manchester, UK;7Birmingham Heartlands Hospital, University of Birmingham, UK;8Gartnavel General Hospital, University of Glasgow, UK;9Glasgow Royal Infirmary, Glasgow, UKCorrespondence: Dr Andrew N. Menzies-Gow, Royal Brompton Hospital, Fulham Road, London SW3 6HP.