26 resultados para Stroke Disease
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
BACKGROUND AND PURPOSE: Elevated plasma homocysteine level has been associated with increased risk for cardiovascular and cerebrovascular disease. Variation in the levels of this amino acid has been shown to be due to nutritional status and methylenetetrahydrofolate reductase (MTHFR) genotype. METHODS: Under a case-control design we compared fasting levels of homocysteine and MTHFR genotypes in groups of subjects consisting of stroke, vascular dementia (VaD), and Alzheimer disease patients and normal controls from Northern Ireland. RESULTS: A significant increase in plasma homocysteine was observed in all 3 disease groups compared with controls. This remained significant after allowance for confounding factors (age, sex, hypertension, cholesterol, smoking, creatinine, and nutritional measures). MTHFR genotype was not found to influence homocysteine levels, although the T allele was found to increase risk for VaD and perhaps dementia after stroke. CONCLUSIONS: We report that moderately high plasma levels of homocysteine are associated with stroke, VaD, and Alzheimer disease. This is not due to vascular risk factors, nutritional status, or MTHFR genotype
Resumo:
Recently, genome wide association studies (GWAS) have identified a number of single nucleotide polymorphisms (SNPs) as being associated with coronary heart disease (CHD). We estimated the effect of these SNPs on incident CHD, stroke and total mortality in the prospective cohorts of the MORGAM Project. We studied cohorts from Finland, Sweden, France and Northern Ireland (total N=33,282, including 1,436 incident CHD events and 571 incident stroke events). The lead SNPs at seven loci identified thus far and additional SNPs (in total 42) were genotyped using a case-cohort design.We estimated the effect of the SNPs on disease history at baseline, disease events during follow-up and classic risk factors. Multiple testing was taken into account using false discovery rate (FDR) analysis. SNP rs1333049 on chromosome 9p21.3 was associated with both CHD and stroke (HR5=.20, 95% CI 1.08-1.34 for incident CHD events and 1.15, 0.99-1.34 for incident stroke). SNP rs11670734 (19q12) was associated with total mortality and stroke. SNP rs2146807 (10q11.21) showed some association with the fatality of acute coronary event. SNP rs2943634 (2q36.3) was associated with high density lipoprotein (HDL) cholesterol and SNPs rs599839, rs4970834 (1p13.3) and rs17228212 (15q22.23) were associated with non-HDL cholesterol. SNPs rs2943634 (2q36.3) and rs12525353 (6q25.1) were associated with blood pressure. These findings underline the need for replication studies in prospective settings and confirm the candidacy of several SNPs that may play a role in the etiology of cardiovascular disease.
Resumo:
Elevated plasma homocysteine level has been associated with increased risk for cardiovascular and cerebrovascular disease. Variation in the levels of this amino acid has been shown to be due to nutritional status and methylenetetrahydrofolate reductase (MTHFR) genotype.
Resumo:
Objective
To examine age and gender specific trends in coronary heart disease (CHD) and stroke mortality in two neighbouring countries, the Republic of Ireland (ROI) and Northern Ireland (NI). Design Epidemiological study of time trends in CHD and stroke mortality.
Setting/patients
The populations of the ROI and NI, 1985–2010.
Interventions
None.
Main outcome measures
Directly age standardised CHD and stroke mortality rates were calculated and analysed using joinpoint regression to identify years where the slope of the linear trend changed significantly. This was performed separately for specific age groups (25–54, 55–64, 65–74 and 75–84 years) and by gender. Annual percentage change (APC) and 95% CIs are presented.
Results
There was a striking similarity between the two countries, with percentage change between 1985 and 1989 and between 2006 and 2010 of 67% and 69% in
CHD mortality, and 64% and 62% in stroke mortality for the ROI and NI, respectively. However, joinpoint analysis identified differences in the pace of change between the two countries. There was an accelerated pace of decline (negative APC) in mortality for both CHD and stroke in both countries from the mid-1990s (APC ROI −8% (95% CI −9.5 to 6.5) and NI −6.6% (−6.9 to −6.3)), but the accelerated decrease started later for CHD mortality in the ROI. In recent years, a levelling off in CHD mortality was observed in the 25–54 year age group in NI and in stroke mortality for men and women in the ROI.
Conclusions
While differences in the pace of change in mortality were observed at different time points, similar, substantial decreases in CHD and stroke mortality were achieved between 1985 and 1989 and between 2006 and 2010 in the ROI and NI despite important differences in health service structures. There is evidence of a levelling in mortality rates in some groups in recent years.
Resumo:
Background and Purpose-The aim was to investigate prospectively the all-cause mortality risk up to and after coronary heart disease (CHD) and stroke events in European middle-aged men.
Methods-The study population comprised 10 424 men 50 to 59 years of age recruited between 1991 and 1994 in France (N=7855) and Northern Ireland (N=2747) within the Prospective Epidemiological Study of Myocardial Infarction. Incident CHD and stroke events and deaths from all causes were prospectively registered during the 10-year follow-up. In Cox's proportional hazards regression analysis, CHD and stroke events during follow-up were used as time-dependent covariates.
Results-A total of 769 CHD and 132 stroke events were adjudicated, and 569 deaths up to and 66 after CHD or stroke occurred during follow-up. After adjustment for study country and cardiovascular risk factors, the hazard ratios of all-cause mortality were 1.58 (95% confidence interval 1.18-2.12) after CHD and 3.13 (95% confidence interval 1.98-4.92) after stroke.
Conclusions-These findings support continuous efforts to promote both primary and secondary prevention of cardiovascular disease.
Resumo:
Background: Long working hours might increase the risk of cardiovascular disease, but prospective evidence is scarce, imprecise, and mostly limited to coronary heart disease. We aimed to assess long working hours as a risk factor for incident coronary heart disease and stroke.
Methods We identified published studies through a systematic review of PubMed and Embase from inception to Aug 20, 2014. We obtained unpublished data for 20 cohort studies from the Individual-Participant-Data Meta-analysis in Working Populations (IPD-Work) Consortium and open-access data archives. We used cumulative random-effects meta-analysis to combine effect estimates from published and unpublished data.
Findings We included 25 studies from 24 cohorts in Europe, the USA, and Australia. The meta-analysis of coronary heart disease comprised data for 603 838 men and women who were free from coronary heart disease at baseline; the meta-analysis of stroke comprised data for 528 908 men and women who were free from stroke at baseline. Follow-up for coronary heart disease was 5·1 million person-years (mean 8·5 years), in which 4768 events were recorded, and for stroke was 3·8 million person-years (mean 7·2 years), in which 1722 events were recorded. In cumulative meta-analysis adjusted for age, sex, and socioeconomic status, compared with standard hours (35-40 h per week), working long hours (≥55 h per week) was associated with an increase in risk of incident coronary heart disease (relative risk [RR] 1·13, 95% CI 1·02-1·26; p=0·02) and incident stroke (1·33, 1·11-1·61; p=0·002). The excess risk of stroke remained unchanged in analyses that addressed reverse causation, multivariable adjustments for other risk factors, and different methods of stroke ascertainment (range of RR estimates 1·30-1·42). We recorded a dose-response association for stroke, with RR estimates of 1·10 (95% CI 0·94-1·28; p=0·24) for 41-48 working hours, 1·27 (1·03-1·56; p=0·03) for 49-54 working hours, and 1·33 (1·11-1·61; p=0·002) for 55 working hours or more per week compared with standard working hours (ptrend<0·0001).
Interpretation Employees who work long hours have a higher risk of stroke than those working standard hours; the association with coronary heart disease is weaker. These findings suggest that more attention should be paid to the management of vascular risk factors in individuals who work long hours.
Resumo:
BACKGROUND: Deposition of beta-amyloid in the brains of patients with Alzheimer's disease is thought to precede a chain of events that leads to an inflammatory response by the brain. We postulated that genetic variation in the regulatory region of the gene for the proinflammatory cytokine tumour necrosis factor alpha (TNF-alpha) leads to increased risk of Alzheimer's disease and vascular dementia. METHODS: A polymorphism in the regulatory region of the TNF-alpha gene was analysed in a case-control study. The polymorphism (C-850T) was typed in 242 patients with sporadic Alzheimer's disease, 81 patients with vascular dementia, 61 stroke patients without dementia, and 235 normal controls. These groups of individuals were also genotyped for the apolipoprotein E polymorphism, and the vascular dementia and stroke groups were typed at the HLA-DR locus. FINDINGS: The distribution of TNF-alpha genotypes in the vascular dementia group differed significantly from that in the stroke and normal control groups, giving an odds ratio of 2.51 (95% CI 1.49-4.21) for the development of vascular dementia for individuals with a CT or TT genotype. Logistic regression analysis indicated that the possession of the T allele significantly increased the risk of Alzheimer's disease associated with carriage of the apolipoprotein E epsilon4 allele (odds ratio 2.73 [1.68-4.44] for those with apolipoprotein E epsilon4 but no TNF-alpha T, vs 4.62 [2.38-8.96] for those with apolipoprotein E epsilon4 and TNF-alpha T; p=0.03). INTERPRETATION: Possession of the TNF-alpha T allele significantly increases the risk of vascular dementia, and increases the risk of Alzheimer's disease associated with apolipoprotein E. Although further research is needed, these findings suggest a potential role for anti-inflammatory therapy in vascular dementia and Alzheimer's disease, and perhaps especially in patients who have had a stroke.
Resumo:
Despite the decline in coronary heart disease in many European countries, the disease remains an enormous public health problem. Although we know a great deal about environmental risk factors for coronary heart disease, a heritable component was recognized a long time ago. The earliest and best known examples of how our genetic constitution may determine cardiovascular risk relate to lipoprotein(a), familial hypercholesterolaemia and apolipoprotein E. In the past 20 years a fair number of polymorphisms assessed singly have shown strong associations with the disease but most are subject to poor repeatability. Twins constitute a compelling natural experiment to establish the genetic contribution to coronary heart disease and its risk factors. GenomEUtwin, a recently funded Framework 5 Programme of the European Community, affords the opportunity of comparing the heritability of risk factors in different European Twin Registries. As an illustration we present the heritabilities of systolic and diastolic blood pressure, based on data from over 4000 twin pairs from six different European countries and Australia. Heritabilities for systolic blood pressure are between 52 and 66% and for diastolic blood pressure between 44 and 66%. There is no evidence of sex differences in heritability estimates and very little to no evidence for a significant contribution of shared family environment. A non-twin based prospective case/cohort study of coronary heart disease and stroke (MORGAM) will allow hypotheses relating to cardiovascular disease, generated in the twin cohorts, to be tested prospectively in adult populations. Twin studies have also contributed to our understanding of the life course hypothesis, and GenomEUtwin has the potential to add to this.
Resumo:
Background and Purpose-Disease of the cardiovascular system is the main cause of long-term complications and mortality in patients with type I (insulin-dependent) and type 11 (non-insulin-dependent) diabetes. Cerebrovascular mortality rates have been shown to be raised in patients with type 11 diabetes but have not previously been reported by age and sex in patients with type I diabetes.